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Disposition of Separated
Plutonium

Frans Berkhout,O Anatoli Diakov,b Harold Feiveson,o
Helen Hunt,C Edwin Lyman,O Marvin Miller,d and
Frank van HippelO

In the immediate term, plutonium, recovered from dismantled nuclear warheads and
from civil reprocessing plants, will have to be stored securely, and under international
safeguards if possible. In the intermediate term, the principal alternatives for disposi-
tion of this plutonium are: irradiation in mixed-oxide (MOX) fuel assemblies in com-
mercial unmodified light-water reactors or in specially adapted light-water reactors
capable of operating with full cores of MOX fuel or incorporation into a matrix with
high-level waste (HLW). Of these three options, blending plutonium into HLW as it is
being glassified for final disposal is probably the least costly and the least burdensome
to safeguards resources.

INTRODUCTION

Today there is. a growing world surplus of separated plutonium. An imbalance
between supply and demand in the commercial sector is being compounded by
deep cuts in the CIS and US nuclear arsenals, with a concurrent release of
large quantities of weapons plutonium. This paper analyzes alternative
approaches for dealing with this material, focusing principally on economic
and security considerations.

The nuclear warheads that are to be dismantled without replacement con-
tain perhaps 150-200 tonnes of plutonium. Dismantlement has already
begun and is expected to continue for at least a decade. At the same time, pro-

a. Center for Energy and Environmental Studies, Princeton University, Princeton,
New Jersey, USA
b. Center for Arms Control, Energy and Environmental Studies, Moscow Institute of
Physics and Technology, 141700 Dolgoprudny, Moscow Area, Russia
c. Independent consultant, Princeton, New Jersey, USA
d. Department of Nuclear Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA



162 Berkhaut, Diakav, Feivesan, Hunt, Lyman, Miller, and van Hippe'

duction of new weapons plutonium has almost ended in both the US and the
Commonwealth of Independent States (CIS), and the rate of production in
other countries is low.

By contrast, commercial separation of civilian plutonium is undergoing
major expansion. During the 1990s, some 200 tonnes of civil plutonium are
due to be separated from power-reactor fuel originating in 14 countries. Most
reprocessing will take place in three nuclear-weapon states (the UK, France,
and Russia). If all of the recovered plutonium is returned to the countries of
origin-about half to non-weapons states-this would greatly increase the
transport and handling of separated weapons-usable plutonium around the
world.

The impending surpluses of both separated weapons and civil plutonium
present a global security problem. All plutonium (except relatively pure Pu-
238) is weapons-usable.! In periods of crisis, stocks in non-weapons states
could greatly lower the threshold to nuclear weapons proliferation. In weap-
ons states, plutonium stockpiles could lower the threshold to "breakout" from
reductions agreements. In any country, they pose a severe challenge to physi-
cal-security systems. The diversion of even a few kilograms of plutonium to a
terrorist group could cause a major international crisis.

In this paper we assess three basic alternatives for disposition of weapons
plutonium and already-separated civil plutonium:

.Safeguarded long-term storage.

.Irradiation in nuclear-reactor fuel.

.Mixing with high-level radioactive waste as it is glassified in preparation
for geological disposal.

We begin, however, by describing the sources of the separated plutonium and
current plans for its storage.

SOURCES OF SEPARATED PLUTONIUM

Table 1 gives an overview of the distribution of world plutonium stocks. Sepa-
rated plutonium is accumulating in large quantities from two sources: the dis-
mantlement of CIS and US warheads, and large-scale chemical reprocessing
of spent fuel from civilian nuclear power reactors.

Dismantled Warheads
Under the reciprocal reductions announced by Presidents Bush, Gorbachev
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Table 1: Summary table of world plutonium stocks and surpluses at the end of
1990.0

Nuclear- Non- Non-NPT Total
weapon nuclear countries

countries weapon
countries

tonnes
In weaponsb 260 0 < 1 c 260

Civil

In irradiated fuel 296c.d 218 179 531

3661 148'

Recycled in MaX 319 18h 0 49

Stored as oxide 64i aJ < 0.5 72

Total 651 244 18 913
(by ownership)

Total 7211 1741 18 913

(by location)

a. Source: D Albrig1t. F. Berkhout and W Walker. World Inventory of P/utorVum and HighIy-fnriched Uranium (Oxtord:
Oxford University Press. 1993) table 123

b. Includes associated stocks. These figures have much lorger error margins (:t 20 percent) thon the rest of the table (:t 10

percent).
c. Includes brae! and India.
d Includes on estimated five tonnes of plutonium contained in East European and Finnish spent fuel sent to Cheiyobinsk

under "toke-bock" OfTongements (adjacent figure of 21B tomes in the next column excludes this amount).
e. Includes India. Pakistan. Brazil. Argentino and Taiwan.
f. Figures in itolics toke account of plutonium held... store in France and the United Kingdom in spent fuel or as separated

plutonium. but belonging to utilities in non-nuclear weapon states customer countries
g. Comprises 25.3 tonnes ot civil plutonium recycled in fast reactors and other R&D tacilitles (5tonnes in the UK, 12.5 in

France, 0.5 in the CIS, and 67 tonnes in the ~the last figure includes material imported from the UK), and 5.8tonnes
of plutonium recycled in thermal reactors in France Four and one holt tonnes of foreign-owned plutonium in Super-
phenix fuel is not included under this column. but in the odjacent column.

-, h. Comprises 45 and 25tonnes of plutonium recycled in Japonese and German fast reactors respectivety. 4.5tonnes of
pluto,"um owned by Italian, German and Dutch utilities looded into Superphenix. ond 6.5tonnes of plutonium recycled
in German, Swiss and Belgian thermal reactors.

i. Includes two tonnes of plutonium separated at Sellafietd and La Hogue. but not yet returned to owners in non-nuclear
weapon states.

J. Comprises 278tonnes of pIuIonOoJm separated from non-nuclear weapon states fuel, less 18 tomes of recycled mate-
rial, less two tonnes held in store (see note g).
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and Yeltsin, Russia and the US are each expected to retain no more than
1,000-2,000 tactical nuclear warheads. In parallel, the Bush- Yeltsin frame-
work agreement of June 1992 envisions limiting the strategic arsenals to
3,000-3,500 warheads each by approximately the year 2000.* If the overall
cuts to approximately 5,000 total warheads each for the US and Russia are
carried through, we estimate that over the next decade the US will retire
approximately 15,000 warheads, and Russia about twice as many.

Modern thermonuclear warheads contain a fission explosive "primary"
and one or more "secondaries" that typically contain fission as well as fusion
fuel. Plutonium is contained in the fissile "pit" of the primary. The Nagasaki
fission weapon contained six kilograms.2 Today's thermonuclear warheads
contain less plutonium; we assume three kilograms on average.3 (They also
contain significant quantities of highly enriched uranium [HEU] in both their
primaries and secondaries-about 15 kilograms on average.4)

Therefore, projected cuts in the nuclear arsenals would release about 45
tonnes of plutonium from US weapons and some 90 tonnes from the CIS arse-
nal. Additional quantities of surplus material in plutonium components from
already dismantled warheads and in unprocessed production scrap could
bring the totals up to about 70 and 120 tonnes, respectively.

Warhead dismantlement involves the removal of electronics, the separa-
tion of the primary and secondaries, and then removal of the high-explosive
implosion system from around the plutonium-containing pit. US nuclear war-
heads are currently dismantled at the Pantex facility near Amarillo, Texas at
a rate of about 2,000 per year.5 Plutonium components from these warheads
are not being further processed. The Rocky Flats Plant in Colorado, to which
they would have been shipped previously for extraction of the plutonium, stor-
age and perhaps fabrication into new warhead pits, has been shut since
November 1989 due to environmental and safety concerns. In the absence of
an alternative, recovered plutonium pits from dismantled warheads are there-
fore being stored intact at Pantex in heavily protected bunkers ("igloos").
There are 60 igloos at Pantex, but as of early 1992, only 18 have been qualified
to store pits. Each of these igloos can currently hold up to 240 plutonium pits.
The possibility of extending this capacity to 400 warheads is being examined.
Storage at the Los Alamos National Laboratory and at the former plutonium-

* AIl of the other fonDer Soviet republics have agreed to become non-nuclear-
weapon states. However, Belarus, Kazakhstan, and the Ukraine each retain joint
ownership with Russia of the warheads formerly located on their territories while the
warheads are being dismantled in Russia, and of the recovered fissile materials. We
therefore will refer to the warheads of the former Soviet Union that are to be disman-
tled and the recovered fissile materials as CIS warheads and materials.
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production sites at Hanford, Washington and Aiken, South Carolina is also

being explored.6
Arrangements for dismantlement and storage of CIS warheads are less

clear. Dismantlement can apparently be carried out at four sites with a com-
bined maximum rate of 5,500-6,000 warheads per year.7 However, in 1992,
the actual dismantlement rate was reportedly about the same as in the US-
2,000 per year. Weapons components are being temporarily stored at the dis-
mantlement sites. At the insistence of other CIS states, weapons components
removed from Ukraine and stored in Russia are being jointly monitored by
both countries under an agreement signed in April 1992. The Russian govern-
ment has said that it would consider similar agreements with Belarus and
Kazakhstan.S It has also expressed a willingness to comply with a US Con-
gressional requirement that the US be able to verify the subsequent peaceful
use of any weapons materials in any storage facility constructed with US
assistance.9 Thus far, however, the US has refused to consider reciprocal safe-
guards on surplus US weapons materials.l0

Russia has proposed that eventually the fissile materials recovered from
CIS warheads be stored at a single secure underground facility, probably near
the Tomsk- 7 weapons plutonium-production complex, and it has requested US
financial assistance for its construction. As of June 1992, the facility plans
called for an initial capacity sufficient to hold about 45,000 storage containers.
Each container would hold either fissile components of dismantled warheads
or fissile material reduced to subcritical metal cylinders ("pucks") containing
4-5 kilograms of plutonium or 10 kilograms ofHEu.ll A contemplated second
stage of construction could increase the storage capacity to about 100,000 con-
tainers. This expansion may be unnecessary, however, if, as has recently been
agreed in principal, the surplus HEU is sold to the US for dilution to low-
enriched uranium for use as a power-reactor fuel. 12

The dismantlement of CIS and US warheads is being accompanied by an
almost complete halt in production of fissile material for weapons. Production
ofHEU for weapons ended in the US in 1964. Plutonium production for weap-
ons in the US ended in 1988 when the last four operating US production reac-
tors (out of a maximum total of 14) were shut down for safety reasons. In July
1992, President Bush announced that the US would not resume production of
either plutonium or highly enriched uranium for weapons. 13

Production of HEU for weapons ended in Russia in 1989. Russian produc-
tion of weapons plutonium continues, but at a low level. (All CIS weapons
material production facilities are located in Russia.) So far, 10 out of 13 pluto-
nium-production reactors have been shut down.14 The three remaining reac-
tors continue to produce fresh weapons plutonium while supplying heat and
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electricity to nearby towns in the Tomsk and Krasnoyarsk regions. IS President

Yeltsin has reconfirmed a 1989 commitment by President Gorbachev that all
Russian military plutonium production will end by the year 2000.16

Reprocessing of Power-Reactor Fuel
By the end of 1990, just over 120 tonnes of civilian plutonium had been sepa-
rated from fuels discharged from the world's power reactors. Of this, some 50
tonnes had been recycled as nuclear fuel-mostly for demonstration fast-neu-
tron plutonium-breeder reactors. The remaining 70 tonnes was stored, princi-
pally at four reprocessing plants: Sellafield in the UK, Chelyabinsk-65 in
Russia, and La Hague and Marcoule in France. Most is stored as sintered plu-
tonium oxide powder canned in subcritical masses.

With substantial new reprocessing capacity coming on line in the UK and
France, about 190 tonnes of plutonium is scheduled to be separated in com-
mercial reprocessing plants by the year 2000. (Table 2 lists the world's com-
mercial reprocessing plants.)

Some of this plutonium will be recycled in fast-neutron reactors, and a
larger amount is planned to be recycled as mixed-oxide (uranium-plutonium
oxide) fuel (MOX) for light-water power reactors (LWRs). Given likely delays
in the construction and operation of MOX fabrication facilities and in the
licensing of reactors to accept MOX fuel, it appears unlikely that more than
60-70 tonnes of plutonium will be used in fuel through 2000. Therefore,
unless reprocessing activities are slowed, the surplus of stored civil plutonium
is likely to increase to about 200 tonnes by the turn of the century. Appendix A
provides a detailed presentation of world balances of civil plutonium as of
1990 and as projected to the year 2000.

As noted in appendix A, about half of the separated civil plutonium arising
in the 1990s will belong to non-weapon states-principally Japan and Ger-
many-that have sent their spent fuel to Britain and France to be repro-
cessed. Most of these non-weapon states have explicit policies against
stockpiling plutonium, consistent with the statutory position of the Interna-
tional Atomic Energy Agency (lAEA) that national stockpiles of excess weap-
ons-usable fissile material should be avoided.17 Notwithstanding this policy,
Japan recently announed that it intended to store for at least three years plu-
tonium brought back this year from France. In general, however, the non-
weapon states therefore may have no practical alternative to storing their
excess plutonium in Britain and France until it can be disposed of in a respon-
sible way.

As discussed in appendix B, there is currently no economic rationale for
plutonium recycling, which appears motivated today primarily by the desire of
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electric utilities in a few industrialized countries to rid themselves of their
accumulated and anticipated stockpiles of separated plutonium. It now
appears possible that, in light of widespread utility disinterest and even oppo-
sition to recycling, commercial reprocessing will be phased out over the next
decade. If so, the world will be left with the daunting, but finite problem of
disposing safely of a few hundred tonnes of separated civilian and weapons

plutonium.

SAFEGUARDED STORAGE OF SEPARATED PLUTONIUM

Unless plutonium is completely fissioned or launched into the sun, a large
fraction will remain for a long time in one form of storage or another, whether
as separated plutonium, in spent fuel, or fixed in another matrix such as high-
level waste glass. Storage in spent fuel or high-level waste glass would make
the storage form self-protecting to a significant extent because of the intense
gamma radiation that associated fission products would emit for hundreds of
years. 18

Stored plutonium metal (in intact pits or pucks) or plutonium oxide
requires far more organizational vigilance because the protective radiation
from pure plutonium is relatively weak.19 In the short term, all separated plu-
tonium will be stored in one of these forms. We discuss in this section the eco-
nomic and security aspects of plutonium metal and oxide storage. Then, in
the following section, we consider ways to fix already separated plutonium
into more proliferation-resistant forms.

International Safeguards
As noted above, Russia has indicated a willingness to have recovered weapons
material be monitored under bilateral verification arrangements. To further
lock in nuclear-weapon reductions, the US and Russia (and eventually the
other weapons states as well) could move beyond ad hoc bilateral arrange-
ments to guarantee peaceful uses for recovered weapons materials and accept
international (i.e., IAEA) safeguards as well.

For such a regime to be credible, all civil nuclear materials would probably
have to be brought under safeguards. Safeguards coverage could come about
in either of two ways. First, under Article XII.A.5 of the IAEA Statute, mem-
ber states may transfer stocks of fissionable material to the control of the
IAEA, which is then responsible for storing and protecting them.20 Alterna-
tively, international safeguards on plutonium stores could be extended to all
weapons- and non-weapons-states as part of a universal ban on the production
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of unsafeguarded civil fissile materials. Under such circumstances, if surplus
weapons plutonium were declared to be "civil," it would automatically come
under safeguards. These extensions of IAEA safeguards could only be done,
however, if the participating parties guaranteed sufficient additional
resources for the new tasks.

Currently, stores of civil plutonium in Britain and France are not fully
*

subject to IAEA safeguards although they are safeguarded by Euratom.
Stores of civil plutonium in Russia are not yet subject to any international

oversight.
In addition, plutonium stores must, of course, be made relatively resistant

.\ to clandestine diversion by subnational groups. Strict physical and adminis-
trative control must be maintained by keeping a constant heavy guard,
severely restricting access to the store and requiring that those who enter the
store exit through portals equipped with detectors sensitive to the neutrons
emitted by plutonium.21 Plutonium containers could be tagged and sealed
after their contents have been assayed and their gamma emissions measured
to assure without a new assay being required that their contents have not
been tampered with in storage. Such arrangements would effectively address
subnational threats and, with regular international inspection, should inspire
confidence in the international community that no state diversion is taking

place.22

Costs of Storage
Storage of plutonium will be costly. The storage facility must be able to resist
penetration by explosives, have fire suppression and cooling systems (espe-
cially if the plutonium is in metal form), and be equipped with a variety of
sensing systems. In addition, there will be continuing high labor costs due to
the large guard force. However, very little specific information is publicly
available on the costs of large plutonium stores such as those at La Hague and
Sellafield. Costs of $1-2 per gram of plutonium per year have been published,
but without further explanation.23 Information gleaned from interviews with
utilities suggests that, in practice, the prices charged by reprocessors for plu-
tonium storage may be higher than this, even approaching $4 per gram per

year.
A 1990 US study estimated that a facility with capacity for 50 tonnes of

plutonium oxide stored in 12,500 shipping canisters, each holding four kilo-
grams of plutonium, would have a capital cost of about $240 million (1987$).24

* All nuclear material in Western Europe declared as being civil is subject to Eura-
tom safeguards. Japanese plutonium stored in Britain is subject to IAEA safeguards.
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With the addition of operating costs, the discounted storage cost would be
about $0.84 per gram-year when the facility was full.25 Another recent esti-
mate attaches a higher capital cost to a storage facility of $1.5 billion for a
store with a 90 tonne capacity, and proposes an undiscounted annual storage
cost of $1-2 per gram of plutonium. 26

An additional penalty associated with storage of reactor-grade plutonium
is that the radiation hazard increases with time. About nine percent of the
plutonium in 10-year-old LWR spent fuel is Pu-241, which decays with a 14.4
year half-life to americium-241 (see table 3). Americium-241 is a strong X-ray
and gamma-ray emitter and its ingrowth will approximately double the radia-
tion hazard from reactor-grade plutonium in two years. MOX fuel fabricators
currently will not accept plutonium that contains more than 1.5-2.5 percent
Am-241 (corresponding to about 4 to 8 years in storage for standard LWR plu-
tonium). The cost of removing Am-241 chemically has been estimated at
about $20 per gram of plutonium. 27

The costs of storage are small compared to the value of the electricity that
was generated as the plutonium was produced. At a storage cost of $1.5 per
gram per year, each year of storage would add only one-tenth of one percent to
the delivered cost of the electricity.* Nor are the costs high in comparison to
the amounts that industrialized nations are accustomed to spend on national
security. At $1.5 per gram per year, the storage of 50 tonnes of plutonium
would cost $75 million per year.

Nevertheless, utilities tend to make decisions on the basis of small mar-
ginal costs. Even where there is a significant economic penalty to the utility
for using plutonium in light-water reactors, cumulative plutonium storage
costs will eventually exceed whatever economic penalty is incurred. t As long
as utilities believe that the only reliable way to get rid of separated plutonium
is in MOX fuel, plutonium storage costs will push them to recycle. If this is
viewed as undesirable, governments will have to make available alternative
methods of plutonium storage and disposal. They will also have to offer incen-
tives to store surplus plutonium for an interim period, or impose their pre-
ferred approach by regulation.

* For a fuel burnup of 33 megawatt-days per kilogram of heavy metal (MWd kg
HM-l) and a heat-to-electricity conversion ratio of one-third, approximately 260,000
kilowatt-hours (kWh) of electric energy would be generated from each kilogram of fuel
and nine grams of plutonium would be produced. Thus about 30,000 kWh of electric
energy would be generated for each gram of plutonium. At an electricity price of $0.05
per kWh, each gram of plutonium would be associated with $1,500 worth of power.
t As is shown in the next section, the mid-range cost penalty for recycling plutonium
in thermal reactors is $5 to 12 per gram. At a storage cost of $1-2 per gram per year,
plutonium storage costs would exceed this penalty within a few years.
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a. Assuming 4.4% Pu in MaX.
b. Assuming 0.7 capacity factor, 0.33 thermal efficiency, 43 MWd kg-I burnup.
c. Assuming 0.05 Ci g-1 high-level waste (HLW) in glass.

Figure 1: Alternative paths to dispose of 6,000 kilograms of weapons-grade plutonium per

year.

ALTERNATIVE DISPOSITION OPTIONS FOR SEPARATED PLUTONIUM

Separated plutonium in retrievable storage could support a national nuclear
weapon program at short notice in both weapon and non-weapon states. As
explained above, indefinite storage would also be costly. Therefore, consider-
ation should be given to alternative methods of making separated plutonium
less accessible for weapons use. The principal alternatives we consider are
(see figure 1):

.MOX in Unmodified LWRs: Irradiation of plutonium in commercial
unmodified LWRs.

.Full-Core MOX: Irradiation of plutonium in specialized reactors.
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.Anti-Reprocessing: Incorporating plutonium into a matrix with high-level
waste.

In addition, we will briefly discuss other options that have been proposed:
immobilization in materials without mixing in high-level waste, glassification
with rock using underground nuclear explosions, space disposal, and pluto-
nium fissioning using accelerator-driven subcritical assemblies.

In considering the various options, we should not exaggerate the implica-
tions for nuclear power. Four hundred tonnes of plutonium recycled in LWRs
would fuel the current world LWR capacity (about 280 gigawatts-electric
[GWe]) for about 1.5 years.28 By contrast, a world LWR capacity of 400 GWe
operating on a once-through fuel cycle could be sustained by known, conven-
tional low-cost uranium (less than $130 per kilogram U) for nearly 100
years.29 A capacity four times larger could be supported for this period if spec-
ulative low-cost uranium resources were included.3D Uranium is not a scarce

commodity.
Conversion of separated plutonium to a less accessible form would also not

preclude a potential long-term future role for plutonium-breeder reactors. If
world nuclear capacity grows so large that breeders are needed, the plutonium
required for breeder start-up inventories could be derived from stored LWR
spent fuel. For example, at a world nuclear capacity of 2,000 GWe, the small-
est capacity for which a shift to breeder reactors might be considered, LWRs
operated on a once-through fuel cycle would discharge about 240 tonnes fissile
plutonium annually.31 On this scale, the fate of 300-400 tonnes of separated
plutonium currently under discussion here does not loom very large.

MOX in Unmodified lWRs
Up until the mid 1970s, the primary justification for separating civil pluto-
nium was to fuel fast-neutron plutonium-breeder reactors. Since then it has
become increasingly evident that these reactors are expensive to build and dif-
ficult to operate. Commercialization is now considered decades away, even by
the most hopeful. Today the only planned large-scale use of plutonium is as
mixed-oxide fuel (MOX) in light water reactors (LWRs). As described in table
4 and in appendix A, recycling programs have been proposed in six countries:
Belgium, France, Germany, Russia, Switzerland, and Japan. In the short-
term, LWR-MOX is the only way in which plutonium can be converted to a less
accessible form at a rate of ten tonnes or more per year.

There is no question that recycling plutonium in LWRs could effectively
convert the plutonium to a more proliferation-resistant form. It would reduce
the amount of fissile plutonium in the fuel by about 40 percent32 and mix the



174 Berkhout, Diakov, Feiveson, Hunt, Lyman, Miller, and von Hippe'

Table 4: Plutonium and uranium recycle policies in Europe and Japan.

Country Plutonium Reprocessed lWR-MOX program
recycle uranium

recycle

Belgium Yes? ? Plan to load 2 reactors with MaX,
beginning mid 1990s.
MaX fabricator.

France Yes Yeso First phase (8 reactors) to be
loaded with MaX by 1993. 8 more
reactors to be loaded by late
1990s. MaX fabricator.

Germany Yes Tested leader in MaX experience.
with MaX Eighteen reactors to be loaded

with Max.b MaX fabricator.

Italy Noc No No operating reactors.

Japan Yes ? Demonstration program
(2 reactors) planned 1994-1997.
Commercial program due to start
in 1995, rising to 12 LWRs loaded
with MaX by 2003. Max fabricator.

Netherlands Yesd No MaX R&D at Dodewaard currently
suspended.

Russia Expected Yes Uranium separated from VVER fuel
recycled in graphite-moderated
reactors (RBMKs).

Spain No No

Switzerland Yes ? Two reactors loaded with MaX.

United No Yes Planning to become an MaX
Kingdom fabricator.

a. Official French policy is 10 recycle uranium recovered by reprocessing spent fuel (U,ec). either by re-enriching the ura-
~um. or by using Ihe Urec as fhe maITix for LWR-MOX mar"lfaclure However. !he low price of natural uranium has
meanl Ihat lhe Eleclricite de France has shown little practical interesl in uranium recycle

b. At presenl orVy ten reoclors hove been awarded Mcenses 10 load MOX fuel. MOX has been loaded 01 seven reoclors
c A small MOX test program ran 01 Gariglianc in the 1970s Most Ifalian separated piulonium has been used 10 fuel

Superphenix
d. A small MOX lesl program ran 01 Dodewaard "' Ihe 1970s and 1980s. Dufch separated plutonium has been used in fhe

SuperpMnix and Kalkar fasl-reoclor cores.
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Figure 2: Sensitivity of fuel costs to uranium price, and SWU costs, using free plutonium.
Assumed burnup is 43 MWd kg-I. UO2 fabrication cost is $200 per kilogram; UF6 conversion
cost is $7 per kilogram of uranium fuel; 0.3% tails assay.35

plutonium with intensely radioactive fission products in the spent fuel. Irra-
diation in LWRs will also convert "weapons-grade" plutonium « 6 percent Pu-
240) to "reactor-grade" (> 19 percent Pu-240). Reactor-grade material is less
desirable for weapons use because of its higher output of spontaneous fission
neutrons and radioactive decay heat (see table 3.)

However, commercial recycling of plutonium raises troubling economic
and security issues. As shown in figure 2, even if plutonium is considered a
"free good" (so none of the costs of reprocessing are charged to the cost of the
MaX fuel), a utility using MaX will incur a cost penalty of $200-500 per kilo-
gram of MaX, assuming a uranium price of $40 per kilogra~. The cost differ-
ential is based on a cost of a kilogram of low-enriched uranium (LEU) fuel of
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about $1,100 and a cost range for a comparable kilogram of MOX fuel of
$1,300-1,600. (See appendix B for details.) This cost differential implies a
cost of recycling 100 tonnes of weapons-grade plutonium in MOX of about one-
half to one billion dollars.

More importantly, plutonium recycling will involve a great increase in
safeguards and physical security requirements to protect against the diver-
sion of plutonium. The director of the Euratom Safeguards Directorate has
stated that inspection of large reprocessing and MOX fabrication facilities will
require a "quantum leap" in inspection effort.33 A large reprocessing plant is
estimated to require 2,000 man-days of inspection time per year (two to three
inspectors present around the clock), or about one-fourth the total inspection
effort of the IAEA today. Extra inspection effort and physical security would
also have to be extended to reactors using MOX fuel. Whether either Eura-
tom, the IAEA, or national security forces will be given the resources to take
on these new tasks without diverting resources from other essential safe-
guards activities remains to be seen.

Even with improved safeguards, given the vast throughputs of material
and intrinsic measurement uncertainties, material accountancy at plutonium
reprocessing and MOX fabrication plants will probably be inadequate to detect
the diversion of one or more fission bomb equivalents of plutonium per year
per plant.34 And, even if the thousands of kilograms of plutonium produced,
fabricated, and transported annually in a full-blown recycling economy could
be completely secured, the commercial use of plutonium in Europe and Japan
would make it more difficult to restrict plutonium separation and use in other
regions that are currently of more proliferation concern.

Furthermore, even apart from economic and security concerns, commer-
cial recycling appears currently to be incapable of absorbing plutonium at the
rate at which it is to be separated. In unmodified LWRs, MOX use is generally
restricted to one-third of a reactor core because of the different nuclear proper-
ties of plutonium compared with U-235. (Neutron absorption cross sections in
plutonium fuel are higher than in uranium fuel, which decreases the effective-
ness of the control rods.)

The annual loading of fissile plutonium for a 1-GWe LWR operating with
one-third MOX fuel is about 0.26 tonnes.36 This translates to 0.38 tonnes of
reactor-grade plutonium or 0.28 tonnes of weapons-grade plutonium per year.
If one-third core recycling were carried out in order to process 100 tonnes of
weapons-grade plutonium released from dismantled CIS and US nuclear war-
heads, about 360 GWe-years of LWR capacity would be required. Over ten
years, this would require over 10 percent of total current world LWR capacity
disregarding the capacity needed to dispose of civil plutonium. In practice,
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civil plutonium recycling will be the priority, and even here the rate of separa-
tion is likely to outpace use.37 As shown in appendix A, expected MOX recycle
capacity will only be able to process about one-half of the civil plutonium
becoming available over the next decade. And countries driven to recycling
because of their growing civil plutonium surpluses are therefore unlikely to
accept plutonium released from CIS and US warheads.

Irradiation in Specialized Reactors

LWRs with Full Cores of MOX Fuel

One way to speed plutonium use in reactor fuel without increasing the num-
ber of reactors and sites involved would be to modify a set of reactors to accept
a full-core of MOX fuel. To address the problem of the shorter mean free path
of neutrons in plutonium fuel, the number of control rods would have to be
increased. In some reactor designs there is space available in the cores. In
others, fuel rods would have to be removed to make space available.

Another potential control problem that could arise with weapons-grade
plutonium is related to that fact that the fraction of delayed neutrons among
the fission neutrons produced by Pu-239 is only about one-third that for U-
235. {Delayed neutrons are neutrons that are released by fission products on
average about ten seconds after fission. About 0.64 percent of neutrons pro-
duced by the fission ofU-235 are delayed.} If the neutron multiplication factor
in a reactor is not larger than unity by an amount equal to this delayed neu-
tron fraction, the time constant for power changes will be determined by the
delayed neutrons and will be slow enough to be managed by mechanically
operated control rods. Because Pu-239 fission has a lower delayed-neutron
fraction, this margin of safety in a reactor fueled with weapons-grade pluto-
nium will be lower than for one fueled with U-235, and the control system
required to keep the neutron multiplication rate within the required range

*
would have to work faster.

If dedicated LWRs designed for full-core MOX could be installed, about
0.78 tonnes of weapons-grade plutonium could be irradiated per GWe-year.
One hundred tonnes of weapons plutonium could be irradiated in about 120
GWe-years. This would require just 12 large LWRs operating for some 10
years. The same approach could be used to deal with surplus civil plutonium.
The throughput of plutonium in LWRs could be further increased if the LWRs

* This problem is somewhat reduced for reactor-grade plutonium, where the higher
delayed-neutron fraction of Pu-241 partially compensates for the smaller one for Pu-
239 fissions.
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were operated at lower burn ups than commercially optimal. For example, at a
burnup of 20 MWd kg-I instead of 43 MWd kg-I, about 1.5 tonnes of pluto-
nium could be irradiated annually in an LWR employing full-core MOX.
(Even at this relatively low burnup, the Pu-240 content in the spent fuel
would be over 24 percent.)

Fast-Neutron Reactors
A fast-neutron reactor operating on a once-through MOX fuel cycle could pro-
cess still larger amounts of plutonium than an LWR of equal power output
because the percentage of fissile plutonium in their fuel is about four times
higher for the same burnup. For example, a 1-GWe fast-neutron reactor (oper-
ating with a 40 percent thermal efficiency, 70 percent capacity factor, fuel bur-
nup of 50 MWd kg-I, and a plutonium fuel fraction of 20 percent), would have
a throughput of plutonium of about 2.4 tonnes per year.

The isotopic mix of plutonium irradiated in fast reactors would not be
altered as much as in LWRs, however. This is because the neutron capture-to-
fission ratio of Pu-239 is much smaller for fast neutrons than for thermal neu-
trons and also because the fraction of fissile plutonium nuclei fissioned in fast-
reactor fuel is lower than. in LWRs operated at the same fuel "burnup." As a
result, in spent MOX fuel that originally contained weapons-grade plutonium,
the percentage of Pu-240 in the plutonium of fast-neutron reactor fuel after an
irradiation of 50 MWd kg-I would be only 12 percent, compared to 25 percent
for LWR fuel at 53 MWd kg-I.38 This, along with the fact that fast-reactor
MOX contains a higher proportion of plutonium (15 to 20 percent) than LWR-
MOX (5 to 7 percent), would make spent fast-neutron reactor fuel more attrac-
tive as a plutonium "mine."

In any case, the world's fast-neutron reactor capacity is very small.39 At
the end of July 1992, following the decision by the French government not to
re-licence the Superphenix reactor, world fast-reactor capacity stood at about
1.8 GWe. The future of the Russian fast reactors must also be deemed uncer-
tain,* while the British Prototype Fast Reactor at Dounreay is scheduled to
close in 1994. That would leave just two fast reactors with significant capac-
ity, the Phenix in France and Monju in Japan, with a combined capacity of
about 0.5 GWe.

New fast reactors could be constructed to irradiate plutonium on a once-
through fuel cycle, but would require considerable modifications from current
designs if the reactors were operated as plutonium burners rather than breed-

* The existing Russian and Kazakh fast reactors have been fuelled principally with
enriched uranium rather than MOX.
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ers. In these circumstances, the uranium in the reactor blanket would be

replaced by non-fertile material, such as stainless steel; and uranium in the
core would also be replaced by non-fertile material (beryllium in some
advanced designs).

Even if based on old designs, the use of fast reactors to burn weapons plu-
tonium would appear to be a costly option. For example, the Japanese Science
and Technology Agency has proposed to build a $4 billion 0.8 GWe fast breeder
in Russia capable of processing two tonnes of weapons plutonium per year. 40 If
this total cost was attributed solely to plutonium burnup with the cost of the
reactor depreciated over a 30-year period, the cost of irradiating 60 tonnes of
plutonium over a 30-year period would be over $7 billion.41.

If the reactor produced electricity about one half of the costs of plutonium
irradiation could be offset, but they would still be much higher than for the
other alternatives considered in this paper.42, *

Because of the long delays required for their design and construction and
their high cost, plutonium irradiation with fast reactors, therefore, seems
unlikely on a large scale.

Conclusion
If separated plutonium is to be processed into spent fuel through irradiation in
reactors within the next two decades, the only practical option appears to be
conventional light-water reactors. This is the option that the nuclear industry
has chosen for separated civilian plutonium. However, the industry's
approach is to use unmodified LWRs with cores restricted to containing one-
third MOX fuel. If the MOX-fuel option is pursued on a large scale for a pro-
longed period of time, we believe that it would be easier to safeguard the fresh
plutonium fuel ifMOX-fuel use were concentrated in a smaller number ofded-
icated LWRs with their control systems adapted for 100 percent MOX load-

ings. Below, however, we examine an alternative approach to plutonium
disposal that may be both less costly and easier to safeguard.

* This assumes that the fabrication costs of MOX fuel for the fast reactor would be

roughly comparable to that for an LWR, even though the plutonium content of the
MOX for a fast reactor would be about four times greater; if the fast-reactor fuel costs
were significantly higher than the LWR costs, the fast-reactor penalty would, of
course, be even greater.



Disposition of Separated Plutonium 181

Anti-Reprocessing

Glassification with High-Level Waste
Plutonium in spent fuel is in a highly proliferation-resistant form by virtue of
being intimately mixed with highly radioactive fission products. But this mix-
ing can be accomplished without irradiating plutonium in reactors, simply by
mixing the plutonium with some of the huge quantities of fission products that
have been produced as a byproduct of past reprocessing. Because the mixing
of the plutonium with the fission products is the opposite of what is done in
reprocessing, we call this approach "anti-reprocessing." (See figure 3.)

The safest time to mix plutonium in with high-level waste (HLW) is when
the HLW is being incorporated into a solid waste form for final disposal. Cur-
rently, glass if the preferred matrix. HLW glassification is being carried out
on a significant scale at La Hague and Marcoule in France; Chelyabinsk-65 in
Russia; and Sellafield in the UK. Additional facilities are scheduled to open
during the 1990s at Tokai, Japan; and Savannah River, West Valley and Han-
ford in the US (see table 5). As a benchmark of an acceptable concentration of
plutonium in glass we take the range of concentrations in LWR spent fuel-
from about one percent by weight in spent low-enriched uranium fuel up to
five percent in spent LWR-MOX fuel.43

The advantages of glassification with HLW are:

.The plutonium would be made relatively inaccessible in a leach-resistant,
radioactive matrix.

.The disposal of the plutonium could be accomplished at little incremental
cost.

.The vitrification of plutonium would be relatively simple and carried out
at a small number of sites, thus minimizing safeguards problems.

In the glassification process, the liquid HLW is converted to glass in a
series of steps: the liquid (nitric acid solution) is evaporated; the nitrates of
the waste compounds are calcined to oxides; the resulting waste oxides are
melted with nonradioactive oxides to form a glass; and the glass is cast into
containers for storage. (Some of these steps may be combined.) At all vitrifica-
tion plants except Chelyabinsk-65 , borosilicate glass (BSG) is the glass of
choice.44 Since the boron in this glass is a neutron absorber, it would insure
against criticality accidents.
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Figure 3: Flow diagram for the Pamela melter, Mol, Belgium. The Pamela vitrification plant
operated between October 1985 and September 1991, when it was closed down for refur-
bishment. During six years of operation two ceramic melters vitrified just over 900 m3 of HLW,
with 13/yactivity of 12 megacuries and a activity of 41 kilocuries, in almost 500 tonnes of glass.
The vitrified product is stored in about 2,200 stainless steel drums containing about 100 tonnes
of waste oxides at a dedicated waste storage facility also located at Mol.
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Technical Considerations
A preliminary investigation has revealed no technical obstacles to inclusion of
plutonium in HLW glass a.t plutonium concentrations of up to a few percent
with regard to plutonium solubility in the glass, the effects of radiation and
heat on the long-term integrity of the glass, or plutonium criticality.

The first assessment of this approach was carried out by a group at Pacific
Northwest Laboratory (PNL).45 The PNL group believes that there should be
no difficulty in dissolving plutonium in borosilicate glasses at levels up to 2
percent by weight plutonium.46 A German experiment found a solubility of 4.5
percent, even allowing for the addition of up to 20 percent by weight of fission
product oxides.47 In contrast, a few Russian experiments using both borosili-
cate and phosphate glasses found plutonium solubility limits as low as 0.1-0.3
percent for both glasses.48 A possible reconciliation of these very different
results based on the different chemical compositions of the German and Rus-
sian glasses is put forward in appendix C.

With regard to potential radiation damage to the HLW glass over time, the
alpha-decays of plutonium are potentially more damaging than the beta- and
gamma-decays of fission products because of their more energetic nuclear
recoils and because alpha particles are converted into helium gas in the glass
matrix. However, it appears that, beyond concentrations of 0.1 percent alpha-
emitters by weight (about one quarter the level already in vitrified HLW),
alpha-radiation damage saturates and does not seriously degrade the integ-
rity of most glasses.49 The helium is expected to remain trapped in the glass
matrix at ambient temperatures and therefore should not cause gas-pressure
buildup. 50

Decay heat produces stresses associated with the difference between the
centerline and the surface temperature of the glass block. Waste-glass forms
are relatively standardized as cylinders with radii of about 20 centimeters.
Depending upon whether the plutonium was weapon- or reactor-grade, one
percent plutonium would increase the decay heat of a tonne of high-level
waste by between 25 and 250 watts per tonne (see table 3). The rate of heat
loss that the glass would experience if it were cooled at a rate of l°C per hour
would be about 200 watts per tonne.51 Actual rates of cooling after casting
exceed 15°C per hour. 52 The added thermal stresses due to plutonium decay

heat could therefore easily be avoided if necessary by a slight decrease in the
cooling rate.

Criticality also does not appear to pose a problem. Since a fuel containing
over two percent fissile plutonium is necessary to drive a light-water reactor
core critical in an optimal geometry, criticality would be unlikely to arise at a
concentration below two percent plutonium by weight in any material, even if
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the material crumbled and mixed with water. As indicated above, the neutron
poison, boron, in borosilicate glass would prevent criticality in any case.

Quantities of Glass
In this section we consider on a country-by-country basis the amounts of glas-
sifted HLW expected to be produced from existing liquid HLW and compare
these with the quantities of glass required to absorb surplus plutonium at dif-
ferent concentrations. We count only the activity of Sr-90 and Cs-137 because
these radioisotopes, which have half-lives of about 30 years, dominate the
radioactivity of the high-level waste for hundreds of years starting about five
years after fission.53

.United States
As shown in table 5, most of the HLW from US plutonium and tritium produc-
tion is located at the Savannah River, South Carolina (260 megacuries of Sr-
90 plus Cs-137 in liquid HLW) and the Hanford, Washington (190 megacuries)
sites.54

At the Savannah River site, some 4,000-5,000 tonnes of HLW is scheduled
to be glassified beginning in 1993 at a plant that is currently projected to cost
about $4 billion. 55 The glass is to have a mean concentration of Sr-90 plus Cs-

137 of about 0.05 curies gm-l.56 (For comparison, the corresponding concen-
tration in spent fuel is about 0.2 curies gm-l.57) At a capacity factor of 50 per-
cent, the output of the glassification plant would be 440 tonnes of HLW glass
per year, enough to hold 4.4 tonnes of plutonium at a concentration of one per-
cent. In ten years, when glassification of the Savannah HLW is due to be com-
pleted, 40-50 tonnes of plutonium could have been glassified-proportionately
more at concentrations higher than one percent. Currently, the actual start-
up date and performance of the facility are quite uncertain, due to a number of
technical problems.58

At the Hanford site, construction of the planned HLW-glassification plant
has not yet begun. The current plan is to incorporate HLW into 25,000 tonnes
of glass, with concentrations of Sr-90 plus Cs-137 ranging from 0.004-0.03
curies gm-l and averaging about 0.018 curies gm-l.59 The planned production
capacity at the Hanford glassification plant is the same as at Savannah River.-, At the same output as at Savannah River-440 tonnes per year-it would take

over 50 years to glassify the Hanford HLW at the proposed concentrations.

.Russia/CIS
Russian/Soviet production of plutonium and tritium for weapons has taken
place at three sites in Russia: Chelyabinsk-65, Tomsk-7, and Krasnoyarsk-
26.60 High-level waste is being vitrified only at the Mayak combine at Chel-
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yabinsk-65. At the other sites HLW has routinely been injected into deep
wells in liquid form.

As of 1990, about 300 megacuries of Sr-90 and Cs-137 were stored in the
HLW tanks at the Mayak facility in Chelyabinsk-65.61 Since 1987, an HLW-
glassification plant has been in operation at Chelyabinsk-65 with a nominal
production capacity of about one tonne of HLW glass per day. By the begin-
ning of March 1992, approximately 460 tonnes of HLW glass had been pro-
duced containing a total of about 45 megacuries at a concentration of about 0.1
curies gm-l.62 At this waste loading, the current HLW inventory at Chelyab-
insk-65 would be incorporated into a total of 3,000 tonnes of glassified HLW.
This much glass could contain from 30 to 120 tonnes of plutonium at loadings
of one to four percent by weight.

Reprocessing continues at Mayak at a rate of about 250 tonnes of fuel per
year, leading to a separation of approximately 2.5 tonnes of plutonium per
year. Assuming a mean burnup of 33 MWd kgHM-l, the on-going reprocess-
ing would add about 50 megacuries of Sr-90 and Cs-137 to the HLW each
year-corresponding to another 500 tonnes of HLW glass per year at past
waste loadings.63 If the annual plutonium increment now being separated is
later mixed back into the associated HLW as the waste is vitrified, it could be
incorporated into the waste at a concentration of about 0.5 percent. It should
be noted, however, that a stock of about 30 tonnes of separated civilian pluto-
nium had accumulated at Chelyabinsk-65 by mid 1992.64 If this plutonium is
incorporated into the 3,000 tonnes of glass expected to be produced from
already existing HLW, it would by itself raise the plutonium concentration in
the glass to about one percent.

.United Kingdom
At the end of 1992, Britain will have reprocessed Magnox65 fuel containing
about 83 tonnes of fission products at Sellafield.66 This would result in an
inventory of about 330 megacuries of Sr-90 and Cs-137 (taking into account

decay).
Britain and France are both expected to produce glass with waste loadings

of about 0.4 curies gm-l.67 At this concentration about 825 tonnes of glass
could incorporate 330 megacuries. One industry source claims a somewhat
lower waste loading of 0.28 curies gm-l.68 At this loading, about 1,200 tonnes
of HLW glass would be produced at the British plant from existing waste.
Twelve hundred tonnes of vitrified HLW at a loading of one percent plutonium
would accommodate 12 tonnes of plutonium-considerably more than the UK
weapons inventory (about three tonnes),69 but much less than the 37 tonnes of
civilian plutonium now stored at Sellafield. As in the Russian case, either
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higher concentrations would be required or a more dilute glass.

.France
At the end of 1992, France will have reprocessed at Marcoule and La Hague
Magnox and LWR fuel containing a total of about 125 tonnes of fission prod-
ucts.70 Allowing for decay, this would correspond to an accumulated HLW
inventory containing about 550 mega curies of Sr-90 plus Cs-137 at La Hague
and 100 megacuries at Marcoule. Assuming 0.4 curies gm-l of glass, about
1,600 tonnes of glass would be produced out of this waste. At a one percent
concentration of plutonium in the glass, this would accommodate about 16
tonnes of separated plutonium, compared to the total estimated French weap-
ons inventory of about six tonnes. Only a limited amount of civil plutonium is
currently stockpiled at French reprocessing sites.71

.Summary
Although the HLW inventories at the British and French reprocessing plants
are comparable to the US HLW inventory (measured in curies) the activity
concentrations in the glass being produced at those sites is higher than is
planned for US weapons-production facilities. This is mainly because of the
more complex chemistry of high-level wastes stored at Hanford and Savannah
River. It is also important to note that, while European HLW-glassification
plants are all operating, the US facilities are still some years away from com-
pletion. Plant adaptations are therefore probably more easily accomplished in
the US.

Safeguards and Security
Because of assay inaccuracies arising from inhomogeneity and other charac-
teristics of the glassified plutonium-HLW product, safeguards for plutonium
glassification would have to rely heavily on containment and surveillance.
The same is true for a reprocessing plant because of uncertainties in the
amount of plutonium in the incoming spent fuel. The HLW-glassification pro-
cess itself would be much simpler than the plutonium separation process at a

reprocessing plant.
The glassified waste form would place the plutonium in a relatively inac-

cessible radioactive matrix at low concentrations. In principle, the plutonium
could be re-extracted, but this would probably be a more difficult and costly
undertaking than extracting plutonium from spent reactor fuel. To remove
the plutonium from the silicate matrix, it would be necessary to use a combi-

.nation of hydrofluoric acid and nitric acid to make the plutonium soluble. This
is a slow process that requires large amounts of acid and special coating mate-
rials (e.g., teflon, tantalum, or platinum) for dissolving vessels and piping. 72
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Costs
If plutonium is encapsulated in HLW glass at existing or planned vitrification
facilities, only the marginal costs of plutonium processing should be attributed
to plutonium disposal. The PNL analysis estimates a cost of just $15 million
to process 50 tonnes of plutonium metal to oxide and into glass. There would
be additional charges for transporting and disposing of the waste in a reposi-
tory. 73 In contrast, an analysis done at the DWPF vitrification facility at

Savannah River suggests that adaptation of that facility to handle plutonium
would add up to $100 million (five percent) to its capital cost and up to 30 per-
cent to its operating costs. This translates to an increase in total costs of about
$30 million per year.74 Assuming the DWPF could handle about four tonnes
of plutonium per year at a loading of one percent, the marginal unit cost of
handling plutonium would be about $7.5 million per tonne. However, even at
this high cost, plutonium vitrification would still cost less than the likely sub-
sidy required for its fabrication into MOX fuel.

Matrices without HLW

What about the possibility of imbedding plutonium in specially designed
materials without high-level waste? Dilution in large blocks of such material
would make the plutonium hard to remove clandestinely and the material
could be designed to minimize leaching-a highly desirable characteristic,
given the long half-lives of some of the plutonium isotopes. The absence of
gamma-emitting fission products would probably also make production of the
wasteform less costly. Instead of conducting all vroduction and maintenance
operations behind heavy shielding, glovebox-type arrangements would be suf-
ficient. On the other hand, the absence of intense gamma emission would also
tend make it less costly to recover the plutonium from this waste form than
from spent fuel or glass containing fission products. However, even in the
absence of fission products, recovery of plutonium from silicate glass would be
hazardous and costly, even prior to final disposal in geological repositories. In
all cases, the effectiveness of safeguards would be enhanced by the fact that
the plutonium would be diluted in large, heavy blocks, not concentrated in flu-
ids or powders.

Glassification by Underground Nuclear Explosions
One of Russia's nuclear-warhead design laboratories, Arzamas-16, has pro-
posed that the plutonium components of nuclear warheads be glassified in situ
with underground nuclear explosions. They estimate that 5,000 plutonium
components containing 20,000 kilograms of plutonium could be destroyed by a
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single 100 kiloton explosion producing a mass of glass with about 0.01 percent

by weight plutonium.76
The cost of such an explosion would be comparatively low-on the order of

a hundred million dollars based on the cost of US tunnel tests-corresponding
to a cost of a few million dollars per tonne of plutonium processed.77 However,
the effects of the explosion might compromise the long-term isolation of the
glass from ground water, and the long-lived fission product content of the glass
would be quite low-less than 0.2 microcuries ofSr-90 and Cs-137 per gram of
glass-easing the task of would-be plutonium miners.78 Finally, a renewal of
interest in "peaceful nuclear explosives" would make the effort to achieve a
Comprehensive Nuclear Test Ban more difficult.

Other Disposal Options
The alternatives for disposition considered above would incorporate pluto-
nium into more proliferation-resistant forms, but would not get rid of the plu-
tonium entirely. Possible measures to do so include space disposal and the
complete fissioning (or "transmutation") of the plutonium in special reactors or
accelerators.

Space Disposal
The most recent version of this proposal is by Theodore Taylor, who envisions
chemically-propelled heavy-lift vehicles carrying plutonium-containing pay-
loads into high earth orbit. The payload-packages would be designed to sur-

1 vive intact the highest-possible velocity impact with the Earth, or an explosion
of the rocket. Once in high-earth orbit, a solar-powered tug would transfer the
package into an orbit from which it would fall directly into the sun.79

Fission in Accelerators

Because of the continuing worldwide impasse over the selection of sites for
geological disposal of spent fuel and glassified high-level waste, there has been
a renewal of interest in the past few years in the idea of separating plutonium
and other long-lived radionuclides out of spent fuel and transmuting them
into shorter-lived species.80 This approach is often called "partitioning and
transmutation" (P-T). In the case of the transuranic elements (neptunium,
plutonium, americium and curium) transmutation would be done by fission.
This fissioning could be accomplished in fast-neutron reactors but other
approaches have been explored theoretically as well, including fissioning by
spallation neutrons from accelerator-produced high-energy protons colliding
with heavy-element targets or by high-energy X-rays from accelerator-pro-
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duced high-energy electrons.
At present there are four accelerator P-T projects under investigation-

two in the US (at the Los Alamos National Laboratory and at Brookhaven
National Laboratory) and two in Japan. Three of the concepts employ proton
accelerators81; one concept employs an electron accelerator.82 All are at a very
early stage of development, and have so far been unable to attract major fund-
ing. The US effort has a total budget for fiscal year 1992 of $2 million.

In view of the expected high cost, it is hard to imagine that accelerator fis-
sioning will be developed for the sole purpose of fissioning already-separated
plutonium. Such a solution is f},nly likely if, in the long term, wide scale P-T
programs are instituted for dealing comprehensively with radioactive wastes.
The fissioning of surplus plutonium stocks might be piggybacked onto such
schemes. At present however, the costs of P-T are estimated as being some
three times higher than direct disposal of spent fuel to a repository, and the
reduced health risks over the long term are still seen as marginal.83

Summary

In general, both these schemes appear technologically daunting. Beyond this,
while the concept of getting rid of the plutonium altogether rather than incor-
porating it into spent fuel or an equivalent matrix seems attractive, it proba-
bly could only be justified if most of the world's spent fuel was to be
reprocessed. Currently, it appears likely that about 75 percent of plutonium
discharged from civilian power reactors through the year 2000 will remain
unseparated in spent fuel (see appendix A). As long as this is the case, it
appears pointless to develop exotic techniques to treat the remaining 25 per-
cent.

CONCLUSIONS

Maintaining control over separated plutonium remains as important as ever.
The most critical near-term tasks are to ensure that all separated pluto-
nium-both weapons-grade and reactor-grade-is stored securely and under
international safeguards.

A second important near-term task is to accelerate the phaseout of pluto-
nium separation-either for weapons or commercial use. With the beginning
of large-scale dismantlement of warheads, further production of plutonium for
weapons makes little sense. The need for commercial reprocessing has also
disappeared.

For the longer term, this paper has proposed alternatives to the conven-~
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tional approach of disposing of separated plutonium in the fuel of unmodified
LWRs. The principal alternatives are:

.Modifying a set of LWRs to be capable of handling full MOX cores.

.Mixing the plutonium into high-level waste as it is glassified.

Both of these alternatives would reduce the number of sites to which sepa-
rated plutonium or fresh MOX fuel was distributed. Full-core MOX LWRs
would reduce by two-thirds the number of reactors to which MOX would have
to be delivered. Glassification would confine all plutonium handling to a few
facilities, and would involve much less handling of plutonium than at a MOX
fuel-fabrication facility. Moreover, it would produce a waste form at least as
resistant to clandestine plutonium "mining" as spent LWR-MOX fuel.

The principal disadvantage of the HLW-glass route relative to the MOX
route is that, in the case of weapons-grade plutonium, plutonium would
remain weapons-grade, while, in spent MOX fuel, it would have been con-
verted to reactor-grade.

With respect to cost, the full-core MOX strategy is probably not much
more expensive than the one-third-core MOX strategy. Core redesign and reli-
censing would be required but safeguards would be required at fewer reactor
sites. Of all the options, however, blending plutonium into HLW glass at exist-
ing or planned facilities is probably the least costly-especially in the US,
which has no established infrastructure for plutonium recycle-because exist-
ing or planned HLW-glassification facilities could be used. Table 6 summa-
rizes very roughly the costs of the principal alternatives, disregarding
development costs.

Large amounts of plutonium (either glassified or in MOX spent fuel) will
ultimately have to be disposed of in geological repositories, as will unrepro-
cessed spent LEU fuel. Although not all questions with regard to plutonium
migration from geological repositories have been resolved,84 it appears that,
given a compatible geochemical environment, MOX spent fuel and high-level
waste glass containing up to a few percent plutonium differ little from spent
LEU fuel with respect to long-term safety,85

It is imperative that any strategy for disposing of plutonium be accompa-
nied by the necessary resources for safeguards and physical security, without
reducing the resources available for other important safeguards responsibili-
ties.
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Table 6: Estimated cost for disposition of 100 tonnes of weapons-grade plutonium. a

-

$ billion

MaX (one-third core)b -1

MaX (full-core)b -1

Dedicated fast reactorC -5

Glassification with HLWd -0.1-0.75

a. Not including development costs 01 option.
b In already deployed LWRs. assuming a cost-penally 01 about $500 per kilogram 01 MOX compared to low-enriched

fuel (see appendix B).
c. Assuming a last reactor dedicated to pluto~um conversion.
d. Assuming thaI plutonium is processed at existing or plonned HLW vitrification lacitililes and that na additional glass is

produced.

Appendix A: Present and Future Civil Plutonium Surpluses

Historic and projected plutonium production and consumption data are presented in
this appendix as background for the figures used in the paper. All figures given are
total plutonium. In general we have assumed recycled civil plutonium to be 75 percent
fissile on average, except where otherwise stated.

Historic Plutonium Production and Separation from Power-Reactor

Fuel
Table A-I presents estimates of the amounts of plutonium discharged from power reac-
tors by country, and the amounts of plutonium separated from reprocessed fuel.86 By
the end of 1990 about 120 tonnes of plutonium had been separated from the irradiated
power-reactor fuel of 17 countries. However, this represented less than one-fifth of the
total amount of plutonium that had been discharged from the world's reactors. Even in
those countries with reprocessing policies, the cumulative fraction of plutonium sepa-
rated was just one-third (119.1 tonnes separated out of 375.2 tonnes discharged).

Although there is due to be a major expansion in the rate of reprocessing over the
coming decade, this will have little impact on the fraction of discharged plutonium
which is separated. Under current reprocessing plans, about 190 tonnes of plutonium
will be separated between 1991 and 2000. This means that by 2000 a cumulative frac-
tion of 23 percent of discharged plutonium will have been separated. The proportion
separated for those countries with reprocessing policies will have risen from one-third
to two-fifths (314 tonnes out of 800 tonnes discharged). From these figures it is clear
that storage, probably with eventual disposal in deep geologic repositories, is now the
principal means of managing the world's spent fuel.
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Historic Plutonium Use and Balances
Table A-2 indicates plutonium use through 1990. Separated power reactor plutonium
has been used principally for fuel for fast reactors (37 tonnes) and thermal reactors (12
tonnes). Small quantities of plutonium separated from power-reactor fuel have been
used for weapons, but these are not included in the table.

When the use of plutonium is compared with its separation it will be seen that
some 60 percent of the material (over 70 tonnes) separated through 1990 has been
placed in store, rather than used. The largest stockpiles exist at Sellafield in the
United Kingdom (over 37 tonnes) and at Chelyabinsk in Russia (about 25 tonnes).

Future Plutonium Use
Estimating what future plutonium balances will be is difficult since it depends on the
operation of plants not yet built and the implementation of new LWR-MOX programs.
Table A-3 shows the capacities of currently operating and planned MOX-fuel fabrica-
tion plants. Tables A-4 and A-5 present estimates of "credible" scenarios of plutonium
use, based on a variety of data set out in the tables.

MOX Recycle in LWRs

Recycle of plutonium in LWRs is being pursued or is proposed in five countries: Bel-
gium, France, Germany, Japan and Switzerland. The rate at which these programs
will use plutonium will be determined mainly by MOX fuel fabrication capacity and
the number of reactors licensed to take the fuel. In the analysis presented in table A-4
account has been taken of these aspects. The table presents a scenario for plutonium
use in LWR-MOX fuel for the decade 1991-2000. The assumptions used are explained
in the footnotes.

Fast-Reactor MOX

During the 1990s it is planned to load plutonium into fast-neutron reactors and an
Advanced Thermal Reactor (ATR) in four countries: France, Japan, the United King-
dom and Russia. Russian plans to build a fast-neutron reactor sited at Chelyabinsk-65
have been put on hold and we have not included this reactor in our analysis.

Plutonium irradiation in the five reactors that may be loaded with fresh fuel
depends upon whether they operate or not. One of these reactors has not yet started
operating (Monju), two are R&D facilities (Joyo and Fugen) and have a history of
uneven operation, while Superphenix may be closed down for good. Only Phenix has a
reasonable operating record, but even it has outstanding safety problems. Suggesting
a scenario for plutonium use at these facilities is therefore fraught with uncertainty.

We have assumed the following scenario for reactor operation:

.The Prototype Fast Reactor (PFR) at Dounreay in the UK is shut-down in 1994.

.Phenix (France) operates until 2005 and Superphenix is permanently shut-down
in 1992.
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.Joyo and Fugen (Japan) operate until 2000 and Monju operates until 2017 at 60

percent capacity.

.BN350 and BN600 (Kazakhstan and Russia) continue to be fuelled with HEU, and
the BN800 is not completed.

Table A-5 shows how much plutonium would be absorbed by these fast reactors under
this scenario. Table A-6 then shows the projected world balance of separated pluto-
nium in 2000.

Balances of Separated Plutonium Forecast for 2010

It is probable that surpluses of the magnitude estimated above will not be permitted to
arise for a mixture of economic and political reasons. However, it is necessary to show
that the time-frame we have chosen does not deliberately underestimate the prospec-
tive use of plutonium after 2000. If it were possible to suddenly increase the demand
for the material after the turn of the century, the surpluses built up during the 1990s
might seem less significant.

With so little certainty about the future of reprocessing, there is little gained in
attempting a full-scale comparison of supply and demand here.87 Instead we can esti-
mate how long it would take to absorb the world stock of civil plutonium (neglecting for
the moment the weapons material) which is projected to accumulate by 2000.

First, we assume that plutonium consumption by fast reactors during the decade
2001-2010 will be about the same as we have forecast for the previous decade-about
10 tonnes.* We further assume that the major thermal recycling programs will con-
tinue to be in France, Germany and Japan. If the MaX programs announced in these
countries all go ahead (16-reactor program in France, 18-reactor program in Germany,
12-reactor program in Japan after 2000), and if we assume that all these reactors are
operating with 43,000 MWd t-l fuel burnup, these three countries could absorb a max-
imum of about 15 tonnes of plutonium per year in 2001-2010.88 Therefore, even if
there was a complete cessation of plutonium separation in 2000, it would still take over
a decade to consume the accumulated world surplus of civil plutonium (about 180
tonnes according to our forecast). If surplus weapon plutonium were made available
for commercial use (between 130 and 190 tonnes in total, by our estimate made above),
then a further ten years of supply would be guaranteed. Under these conditions, by
the year 2000, total plutonium surpluses would be sufficient to supply commercial uses
for about 20 years.

* This assumes that the Demonstration Fast-Breeder Reactor and Demonstration

Advanced Thermal Reactor planned in Japan will not be built.
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Tobie A-2: Power reactor plutonium separation and use through 1990 (total
plutonium. tonnes).
-

Country Plutonium Plutonium use: Plutonium use: Plutonium
separated Fast reactors Thermal reactors balance

Belgium 1,2 0 0,3 0.9

Bulgaria. CIS.
Czech..
Finland. GDR.
HungaryO 25 < 0.5 24.5

France 23.6b 12.6 5.8 5.2c

Germany 15.8 2.5 4.9 8.4

India 0.1 0.1 0

Italy 2.6 3.7d 0.1 -1.2e

Japan 6.4 4.5 0.02 1.9

Netherlands 0.7 0.2' 0.2 0.3

Switzerland 1.1 0 1.0 0.1

UK 42.5 5 37.5

US 1.5 6.7 -5.2g

Total 120.5 35.7h 12.3 72.5

37.3i 70.9j

0, Reprocessed fuel in East Europe and Finland was owned by the Soviet Union and supplied to clients under "take bock"

arrangements
b. Including some tour tonnes of plutonium separated from Vondellos 1 fuel at Marcoule and La Hogue. which is French

property ,
c. This is a provl$ional figure since French plutonium was used in the core for the (never operated) Kalkar (Germany) fast-

neutron breeder reactor (about &X) kilograms total plutonium) and in the foreign-owned segment of the Superphenix
core (about three tonnes of total plutonium)

d. Plutonium in 33 percent of Superphenix core owned by the Italian utility ENEL.
e ENEL bought plutonium trom a variety of sources to make up its proportion of the first Superphenix core
f Material leased for the Kalkar first-core
g. We assume here that all of this material came from other countries' stocks of CM plutonium-notably Britain
h. This does not include approximately 16 tonnes of plutonium used in the 16 percent segment of Superphenix owned by

the multinational consortium SBK. and supplied from a variety of sources. including French magnox plutonium,
i. Adding 1.6 tonnes of unollocated SuperPhenix plutonium (see note h)
j Subtracting 1.6 tonnes of unaliocated Superphenix plutonium (see note i)
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Table A-5: Credible scenario for FBR-MOX and ATR-MOX plutonium consumption,
1991-2CXXJ.

Country Reactor Type Quantity of Quantity of total
fuel loaded plutonium loaded

tonnes MOxa tonnesb

France Phenix FBR 17 3.9

Superphenix FBR 0 OC

Japan Jovo FBR 8d 1.0

Fugen ATR 90 1.7

Monju FBR 16 3.8

Russia/Kazakhstan BN350 FBR 5 0

BN600 FBR 5 Oe

United Kingdom PFR FBR 0 0

United States FFTF FBR 0 0

Total 141 10.4

a. Assuming mean fuelling cycles of 28 months. Mean annual reloads are therefore 40 percent of core.
b. Mean fuel enrichments are token from 0 Albright. F 8erkhout. W Walker. World Invenfory 01 Plufonium and Highiy-

Enriched Uranium (Oxford: Oxford University Press. 1993) pp 119-128.
c. Following the French governmenfs decision not to permit the restart of SuperpMnix. July 1992
d. Assuming annual full-core reload
e. Some plutonium use has been planned at 8N~. but in the absence of completed MOX fabrication capacity or

clearly stated plans we do not attempt 10 estimate consumptoo
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Appendix B

The Economics of Plutonium Recycle
At current natural uranium and enrichment prices, the value of uranium recovered in
reprocessing (Urec)' if recycled, is about $60 per kilogram Urec.89 This compares with a
cost of reprocessing of $1,000-1,800 per kilogram heavy metal (i.e., the total weight of
uranium, plutonium and other transuranic isotopes in the spent fuel). Therefore, the
value of the recovered uranium offsets only a few percent of the cost of reprocessing.
Since low-enriched uranium fuel contains about 0.9 percent plutonium, of which 70
percent is fissile isotopes, the remaining uncompensated cost of reprocessing amounts
to between $150 and $280 per gram of fissile plutonium. Since a kilogram ofMOX fuel
contains 35 to 50 grams of fissile plutonium, the cost of the plutonium recovery, if
charged to the MOX fuel, would contribute between about $5,000 and $14,000 per kilo-
gram to the price of MOX fuel-or roughly 4 to 13 times the current price of low-
enriched uranium fuel with the same energy value (see below).

Even when the costs of reprocessing are considered sunk (i.e., the plutonium is
considered a "free good"), the high costs associated with the extra health and safe-
guards protections that must be taken in any facility processing plutonium make the
fabrication cost of MOX fuel by itself higher than the total cost of low-enriched ura-
nium fuel at today's prices for natural uranium and separative work. A simple compar-
ison between the costs of LEU and MOX is illustrated by figure 2.90 Assuming as a
base case a natural uranium price of $40 per kilogram of uranium (somewhat higher
than the current long-term contract price)91 and a price for enrichment of$100 per sep-
arative-work unit (SWU),92 the cost of LEU fuel (burnup 43 MWd kg-I) can be read
from the graph as about $1,100 per kilogram HM. This converts to an undiscounted
cost of 3.2 mills per KWhe.93 A realistic price for MOX fuel fabrication and delivery
today is $1,500 per kilogram MOX (4.4 mills per KWhe).94 At these prices, MOX would
therefore be about one-third more expensive than LEU fuel, even disregarding the cost
of separating the plutonium from spent fuel and the extra security costs for MOX recy-

cling.
The price of uranium, which has been low for a number of years, is likely to remain

so. Large reserves of uranium ore exist in many countries, while uranium from the
CIS has also recently come onto world markets. The current spot-market price for ura-
nium has stood at about $20 per kilogram of uranium for over a year, while the second-
ary market price for separative work has fallen below $70 per SWU.95

Siemens, which has just built a large (100 tonne heavy-metal per year through-
put) MOX fuel fabrication plant in Germany, claims that it could build a duplicate
plant for a capital cost ofDM700 million ($450 million, at the late 1992 exchange rate)
that could produce competitively priced MOX fuel, (about $1,000 per kilogram HM).
Siemens has proposed that the West fund the construction of such a plant in Russia to
process surplus CIS weapons plutonium.96 On the other hand, the prices for MOX
could be significantly greater than the charges currently quoted in Europe. For exam-
ple, fuel fabrication prices are very sensitive to throughput. Contract charges of up to
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$3,000 per kilogram MOX have been projected for the Siemens German plant if it oper-
ates significantly below capacity.97 At this level, MOX would cost almost three times as
much as the LEU described above.

Given the various uncertainties, we take a central range of the MOX-fuel LEU-
fuel cost differences $200-500 per kilogram. With this cost difference and for MOX fuel
designed for 43 megawatt-days burnup per kilogram heavy metal (MWd kgHM-l) and
containing about 45 grams of weapons-grade plutonium per kilogram98 the cost ofrecy-
cling 100 tonnes of weapons-grade plutonium in MOX (i.e., the premium to be paid for
fuelling reactors with MOX rather than LEU) would range from $0.44 to $1.1 billion.

Appendix C: Plutonium: How Soluble in Glass Is It?

Very little information is available on the solubility of plutonium in glass, defined as
the maximum concentration that can be loaded before the glass undergoes a transition
from a homogeneous phase to a heterogeneous phase.99 There are two main phenom-
ena which can result from such a transition: devitrification, in which the formation of a
crystalline precipitate occurs; and glass-glass phase separation (immiscibility), in
which the melted glass separates into regions containing glasses of different composi-
tions. The latter effect can cause heterogeneity on a wide range of different scales, so it
sometimes can only be observed using high-resolution microscopy.

For the purposes of long-term storage of radioactive wastes, both types of transi-
tion must be avoided. Crystallization is the more immediate problem, causing the ;
glass matrix to be degraded at once, but phase separation, even at small scales, is a
sign of potential future instability of the glass. For instance, the presence of silica-
depleted glass regions would provide sites where leaching by water would be facili-
tated. Thus typically the necessity of preventing crystallization places one constraint
on the concentration of non-glass forming ions like plutonium, and avoidance of phase
separation imposes additional requirements.

These phenomena are sensitive to a wide range of different factors, such as the
absolute and relative concentrations of the various ions that form the glass, the melt-
ing temperature, the cooling rate, and the temperature at final disposal. By suitable
manipulation of these parameters, glass technologists can optimize the conditions for
solubility of a desired component.

The properties of a cation (positive ion) that determine to a significant extent its
behavior in glass are surprisingly few in number: these include its size and its charge
(which in turn fix the strength with which it interacts electrostatically with other ions).
For this reason, the solubility of plutonium can be estimated by comparison with the
solubilities of less exotic cations which have similar characteristics. The properties
affecting solubility, while rather difficult to measure directly in glass, can be inferred
from the structure of the crystals formed by the oxide compounds in which the cations
can be found. This is because the bond lengths which occur in glasses are usually very
similar to those that occur in the corresponding crystals, the former being disordered,
but nearly as dense, versions of the latter.
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For example, the dissolution of uranium in borosilicate glass has been studied by
Schreiber et al.lOl Uranium is an actinide element like plutonium, and even though
the metallic forms (and therefore the chemical properties) of the two elements are
quite different, the oxides UO2 and PuO2 have very similar crystal structures, indicat-
ing that their behavior in glasses should be homologous. Uranium has been found to
have a solubility (with respect to crystallization) as high as 40 percent by weight when
in 6+ oxidation state with an optimized glass composition; thus it is reasonable to pre-
dict that a quantity of plutonium on the same order could be dissolved in glass before
the onset of crystallization, assuming a sufficiently oxidizing environment.

The above experiments with uranium, however, did not include a detailed study of
the microstructure, and thus cannot exclude the possibility of phase separation. To
estimate the upper limit on plutonium concentration with respect to phase separation,
one may turn to a study of the waste glass ABS-39, which was experimentally deter-
mined to be homogeneous over the observed temperature range (>600°CVO2 (At lower
temperatures, phase separation would not be experimentally observable, for even if it
were thermodynamically favored, it would be kinetically inhibited due to the high melt
viscosity.) This glass contains both UO2 (1.66 percent by weight) and zrO2 (1.26 per-
cent by weight). The zirconium content is important in this context because the zirco-
nium cation is tetravalent, like Pu4+, and the compound zrO2 is composed of crystals
with bond lengths and coordinations (numbers of nearest neighbors) similar to those of
PUO2' Although zirconium is known to promote phase separation, the concentration
contained in ABS-39 is apparently below the critical value. If plutonium were substi-
tuted for zirconium and uranium, this glass could accommodate at least 4.4 percent by
weight plutonium before the occurrence of phase separation. This estimate is consis-
tent with the German experiment with plutonium solubility in borosilicate glass cited
in the text.47

Changes in the composition of the base glass can have a significant impact on the
quantity of plutonium that can be dissolved in the glass. For example, one study has
shown that the zirconium saturation limit in aluminosilicate melts increases sharply
as the number of alkali cations in excess of aluminum increases, implying that alkalis
assist in the stabilization of soluble complexes formed by tetravalent cations of large
ionic radius. 103 It is likely that this mechanism is largely responsible for the higher sol-

ubility found in the German glass relative to the Russian glass cited in the text,48 since
the composition of the latter contained a substantially smaller number of excess alkalis
than that of the former. Future solubility studies should recognize the importance of
this and similar mechanisms.

Due to the complexity of multicomponent glass systems, however, it is possible
that specific chemical processes could occur which might lead to discrepancies with the
above estimates. Thus the solubility of plutonium in HLW glass can only be conclu-
sively established by performing a comprehensive series of experiments involving a
wide range of glass compositions.
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