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Effective treaty monitoring requires that nuclear monitoring data be safe from tamper-
ing. Tamper-indicating seals and standard data encryption/integrity techniques, how-
ever, do not provide sufficient security, especially against electronic and physical attacks
in the context of international nuclear safeguards. This article presents an alternative
approach for assuring the integrity of monitoring data called the “One-Time Pad of Dig-
its Substitutions” (OPODS). This cipher is a combination of the unbreakable one-time
keypad, and the traditional substitution cipher. OPODS provides unbreakable security
prior to an adversary trespassing inside nuclear monitoring hardware (even if the tres-
passing goes undetected), and good security after.

INTRODUCTION

International nuclear safeguards (“treaty monitoring”) is a highly unconven-
tional type of security application.1 Unlike ordinary security applications such
as domestic nuclear safeguards, the adversary in international safeguards (i.e.,
the “host” or nation-state being monitored) owns the assets and facilities of in-
terest. This adversary will—for reasons of safety, security, counterintelligence,
reciprocity, nationalism, and geopolitics—often insist on a full, detailed under-
standing of the monitoring strategies, hardware, and security techniques being
employed by the inspectors. With conventional security applications, in con-
trast, adversaries are not ordinarily briefed. Other attributes of international
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nuclear safeguards are also quite unique compared to domestic nuclear safe-
guards and other more routine kinds of security applications.1

Reliable treaty verification particularly requires that the inspectors can
trust the veracity of the monitoring or surveillance data gathered in or near
a nuclear facility by the monitoring hardware, which is typically unattended
once running. Such hardware can include, for example, seismometers, radiologi-
cal measuring instruments, video or photographic surveillance systems, access
control devices, vehicle counters, and intrusion detectors. However, how can
such data be secured, especially when the adversary in international nuclear
safeguards has full access to technical details of the monitoring hardware, plus
national- or world-class resources and technical expertise that can potentially
be exploited for cheating?

Traditionally, tamper-indicating seals2−4 are used to detect the opening
of, or tampering with, hardware, electronics and instrumentation racks, while
standard data encryption/integrity techniques are used to protect the recorded
or transmitted data. Unfortunately, as will be discussed later, these approaches
are not fully reliable for international nuclear safeguards.

This article presents a new technique (involving a combination of two
previously unconnected old techniques) for guaranteeing data veracity called
“OPODS” for “One-Time Pad of Digit Substitutions.” OPODS is a simple, fast,
and highly secure technique for securing recorded or transmitted data.5 It is
computationally practical for low-cost microprocessors. OPODS has no propri-
etary, licensing, or export control issues associated with its use (unlike many
other modern encryption or authentication techniques), and it is well suited
for use in international nuclear safeguards, in addition to certain other kinds
of data logging applications where security is critical, yet where the adversary
may understand details of the monitoring hardware, and be able to gain surrep-
titious physical access to it. An example would be a Global Positioning System
(GPS) location data logger.6

WHAT’S WRONG WITH SEALS?

The Vulnerability Assessment Team (VAT) (formerly located at Los Alamos
National Laboratory) has extensively studied hundreds of different tamper-
indicating seals over the past 15 years. The VAT has shown how all the seals
studied can be defeated quickly, using only low-tech tools, supplies, and methods
that are available to almost anyone2,7−9 (To “defeat” a seal means to remove it,
then after stealing or tampering with the container contents, resealing using
the original seal or a counterfeit, all without being detected.) The VAT has
not yet seen a seal, including passive and electronic seals used for nuclear
safeguards that require a sophisticated adversary or attack to defeat it.

There are practical countermeasures for most of the seal defeats demon-
strated. These typically require the seal user to modify how he or she installs
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and inspects seals. There also needs to be extensive hands-on training for seal
installers and inspectors so that they understand the vulnerabilities for the
specific seals they are using, and know how to look for the most likely attack
scenarios. Unfortunately, all of this involves more time, money, and effort than
most security programs are willing to invest, even for domestic or international
nuclear safeguards.

Fortunately, better seals are possible.2,10 Conventional seals can be modified
to make attacks more difficult. An even more effective approach is to use a
fundamentally novel approach to tamper detection, what the authors call “anti-
evidence” seals.2,10 Conventional seals can often detect tampering just fine, but
must store this information in or on the seal until the seal can be inspected.
However, an adversary can too easily hide or erase this “alarm condition,” or
replace the seal with a fresh counterfeit.

With anti-evidence seals, information is stored in or on the seal at the time
it is installed that indicates that tampering has not yet occurred. If tamper-
ing is detected, this secret “anti-evidence”—typically a byte or two—gets in-
stantly erased.11 The absence of the anti-evidence at the time of seal inspection
indicates that tampering has occurred. With this antievidence approach, an
adversary cannot hide or erase the “alarm condition”; counterfeiting the seal
hardware gains him nothing if he does not know the anti-evidence data to store
in or on the seal.12

The authors believe anti-evidence seals can provide much more reliable
tamper detection than conventional seals. In the authors’ experience, how-
ever, there is relatively little serious interest in any quarter in better tamper-
indicating seals, including for nuclear safeguards applications (domestic or in-
ternational). Moreover, it is unlikely that anti-evidence seals, even if they prove
superior to conventional seals, can provide absolute guarantees about detect-
ing tampering. Seals should continue to be used, but they are not a panacea for
assuring that monitoring data (or equipment) are free from tampering.13

WHAT’S WRONG WITH CONVENTIONAL TECHNIQUES FOR DATA
INTEGRITY?

The critical issue of concern in this article is the integrity of the monitoring
data gathered for verifying a nation’s compliance with nuclear treaties, agree-
ments, and international obligations.14 Data integrity is commonly checked
using hashes (encrypted or unencrypted) or closely related Message Authenti-
cation Codes (MACs).15−17 Hashes are fixed length numbers, computed from a
larger data set, that typically change dramatically when some or all of the orig-
inal data set is modified. A checksum—summing all the digits—is an example
of a simple hash.

Full encryption of the data (using a cipher) can also be used (although
this is uncommon) to check data integrity in situations where the adversary
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may want to make specific, unauthorized changes to the data in order to hide
evidence of cheating.18 Ciphers are more typically applied nowadays to data
confidentiality applications where someone wishes to transmit data between
two physically secure locations19 such that anyone intercepting the encrypted
data cannot understand what it means. The original secret data (or message)
is commonly called the “plaintext,” whereas the encrypted data (or message)
is called the “ciphertext.” For most applications involving the use of ciphers to
provide data confidentiality, the bad guys are assumed to know the ciphertext
and the encryption algorithm, but not the plaintext or the secret encryption
key(s). This is not the case for international nuclear safeguards, where the
adversary will typically know the plaintext for reasons discussed later and
where data confidentiality is not desirable for reasons of transparency.

One of the reasons to consider using a cipher for data integrity (even though
this is uncommon) is that it is generally more difficult to “break” a sophisticated
cipher, that is figure out the secret key (even knowing the plaintext), than
it is to create a new document that has the same hash or MAC tag as the
original. Moreover, the level of effort required to break a cipher is usually well
understood, whereas the security provided by a hash or MAC is often unclear.20

There are four main problems with using hashes, MACs, or conventional
ciphers for guaranteeing the veracity of nuclear monitoring data. First, mod-
ern techniques that rely on secret keys (whether hashes, MACs, or ciphers)
are only “computationally secure,” not absolutely secure.15−17,21 This means
that experts think that figuring out the secret key or being able in other ways
to create false data that appears authentic should require enormous math-
ematical and computational resources. The problem in international nuclear
safeguards, of course, is that the nuclear adversary (being a nation-state) typ-
ically will have substantial resources, including world-class mathematicians,
cryptoanalysts, and computers, or at least access to them. Moreover, histori-
cally hashes (encrypted or not), MACs, and ciphers that were once thought to
be computationally secure have been defeated (sometimes surprisingly easily)
as new cryptoanalytic techniques, computation power, and expertise become
available.22

A second serious problem with hashes, MACs, or conventional ciphers is
that they provide no significant security if the adversary can gain access to the
sending or receiving location. This allows him to obtain the secret key(s) and/or
algorithms being used, or to directly tamper with the plaintext, and thereby
replace the real data with his own fake data. In theory, if trespassing into
monitoring hardware could be reliably detected and the encryption key(s) or
security algorithms erased quickly enough, the adversary would have a more
difficult challenge in faking the monitoring data (although it would still be
theoretically possible). Seals and current tamper detection methods, however,
are not up to the challenge, as previously discussed. In addition, the time to
thoroughly erase modern cipher keys can be relatively long on microprocessors
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because the minimum recommended key size for high security applications is
2048 bits = 256 bytes.23,24 MAC keys tend to be smaller, but still require a
minimum of 128 bytes to be quickly and reliably erased, and often more for
high level security.

A third problem with conventional methods is that even if the secret key(s)
get fully erased before an adversary can retrieve them, the adversary in inter-
national nuclear safeguards will typically know the plaintext, the ciphertext,
and the cipher or data authentication algorithm being used.25 He or she will
know the plaintext because it is his facility where the monitoring measure-
ments are made and he will understand what is occurring in his own facility.
He will also be able to get the ciphertext, that is, the stored logged data, and
(if necessary) the data encryption/integrity algorithm by trespassing into the
electronics or otherwise hacking the microprocessor. In fact, he may automat-
ically know the algorithm because the inspectors will probably be required to
disclose it for reasons of transparency, and because the inspected nation may
insist on being provided with the software source code.26 In this case a cipher is
much easier to break (i.e., figure out the secret key) when the adversary knows
the plaintext, the ciphertext, and the cipher algorithm27—a situation that is
atypical for conventional encryption applications (although common for hash
or MAC applications).

The fourth problem with hashes, MACs, and conventional ciphers is that
they are computationally intensive and can be difficult to implement efficiently
on a microprocessor,28 making them less than practical for small, cost-effective,
transparent field monitoring equipment.29

THE ONE-TIME KEY PAD

There is only one cipher that can be proven mathematically to be unbreakable
for all time: the One-Time Key Pad.21,30 This cipher, also known as the one-time
pad (OTP) or Vernam cipher, was invented around 1917. In addition to being
unbreakable, the OTP has the advantages that it has no proprietary, licensing,
or export control issues (unlike some modern ciphers and MACs), and is simple
and very fast.

The idea with the OTP is to use a totally random key that is as long as the
plaintext. This key can be used only once, and then must be discarded.31 Al-
though Soviet spies used the one-time keypad extensively in the 20th century,32

it has not been considered practical for many applications because of the large
storage requirements for the key. With the ever decreasing cost and size of
digital storage media, however, this disadvantage is becoming much less im-
portant. The OTP is typically used to encrypt alphabetic characters, but here
its use is demonstrated for encrypting numeric values, which are more rele-
vant for monitoring data. Assume one wishes to encrypt the digits “1663,” and
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that the first 4 random digits in the one-time pad or random digits are “3907”.
Thus:

plaintext 1 6 6 3
OTP 3 9 0 7

Adding the plaintext and OTP numeric values, the results are

plaintext + OTP sum 4 15 6 10

Sum values in excess of 9 are “wrapped around” by subtracting 10, that is, the
modulus 10 is computed33 to obtain,

sum mod 10: 4 5 6 0

The encrypted message (ciphertext) is thus “4560.” To decrypt the message,
the process is reversed by subtracting the OTP values using modulus 10.

Note that the OTP cipher alone is not sufficient for securing safeguards
monitoring data for two reasons. First, it is difficult for a microprocessor to
rapidly erase a large one-time pad (or the ciphertext) once physical or elec-
tronic intrusion is detected. Secondly, even if the one-time pad gets erased, the
adversary can trivially reconstruct it because he knows the plaintext and can
read the stored ciphertext. Reconstructing the OTP allows him to replace the
true monitoring data with fake data that will appear authentic to the nuclear
inspectors.34

SUBSTITUTION CIPHER

Even simpler than the one-time pad is the substitution cipher,17,35 which is
thousands of years old, and thus has no proprietary, licensing, or export control
issues. This cipher, however, can be easily broken, even by amateurs. As the
name suggests, a substitution cipher involves substituting each plaintext char-
acter with another predetermined ciphertext character. For example, assume
that the substitution cipher is given by the following one-to-one correspondence
between each plaintext decimal digit in the top row with the digit directly below
it in the bottom row:

plaintext digit 0 1 2 3 4 5 6 7 8 9
mapping 2 9 8 3 7 1 0 6 5 4

The (secret) bottom list of digits in random order (with none repeating)
specifies the substitution cipher, and is known as the key or “mapping” because
it specifies how the plaintext digits “map” to ciphertext digits. For example,
in the above cipher, 1 maps to 9, 6 maps to 0, 3 maps to 3, and so on. Thus,
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plaintext “1663” (for example) encrypts to ciphertext “9003.” To decrypt, the
mapping (key) is used in reverse.

In a traditional substitution cipher, the mapping is unchanged, no mat-
ter how long the message. A given plaintext digit will always encrypt to the
same ciphertext digit, regardless of where the digit appears in the plaintext.36

This is what makes the security of a substitution cipher so poor, in contrast
to the OTP where the (additive) key is always changing.37 Like the OTP, the
conventional substitution cipher is useless on its own for protecting monitoring
data—especially when the adversary can break into the monitoring hardware
without being reliably detected.

ONE-TIME PAD OF DIGIT SUBSTITUTIONS (OPODS)

OPODS is an encryption method that is the union of a one-time pad and a
substitution cipher. It can be thought of as a substitution cipher where the
random mappings (or “key”) change for every character or digit to be encrypted.
The encryption step is done in the same way as the substitution cipher; the only
difference is the mapping changes after every plaintext digit is encrypted, and
each mapping is immediately erased after it is used. Another way to think of
OPODS is as a one-time pad of substitution mappings, each mapping being
discarded after it is used just once to encrypt one character or digit.38

Consider the following example where the (plaintext) data “1663” is en-
crypted. The first mapping shown below is used to substitute “2” for the first
digit (“1”) in the plaintext; “2” thus becomes the first ciphertext digit. To find
the substitution for the second digit, one moves to the next random mapping
after erasing the first. This means that “6” in the plaintext gets replaced by “8.”
This process is continued until the plaintext is all encrypted.
Mapping for first plaintext digit:

plaintext digit 0 1 2 3 4 5 6 7 8 9
mapping 9 2 4 1 7 3 6 5 0 8

So, for example, “1” → “2”
Mapping for second plaintext digit:

plaintext digit 0 1 2 3 4 5 6 7 8 9
mapping 2 4 0 1 5 7 8 6 9 3

So, for example, “6” → “8”
Mapping for third plaintext digit:

plaintext digit 0 1 2 3 4 5 6 7 8 9
mapping 9 2 1 7 5 3 0 6 8 4

So, for example, “6” → “0”
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Mapping for fourth plaintext digit:

plaintext digit 0 1 2 3 4 5 6 7 8 9
mapping 1 2 6 7 0 8 5 9 3 4

So, for example, “3” → “7”
These mappings thereby give us the ciphertext “2807.”

This OPODS method is just as strong (unbreakable) as the conventional
one-time pad (OTP) for ciphertext only attacks. However, unlike the conven-
tional OTP, if the OPODS ciphertext and plaintext are both known, it is still
not possible for an adversary to reconstruct used, erased mappings even if un-
limited amounts of plaintext and ciphertext are available. This is because the
only information that can be confidently inferred is the value of just one of
the 10 digits in each previously used mapping. Because the adversary wants
to encrypt a different set of plaintext digits than were actually encrypted, he
is stuck.39 With no clues as to what the used mappings were, he has only a
1 in 9 chance40 of guessing the correct ciphertext digit corresponding to each
plaintext digit he wants to fake.

Now nuclear safeguards monitoring data will typically involve quantitative
sensor readings recorded by a microprocessor. It thus makes more sense to use
hexadecimal (“hex” or base 16) digits, rather than base 10 decimal digits for the
plaintext, ciphertext, and OPODS mappings.41 With the use of the hex digits,
each OPODS mapping consists of 16 hexes, in random order, with no hex digit
repeated in a given mapping.

Each of the OPODS hex mappings will therefore be a random permutation
of the set of hex digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. There are over
20 trillion (16!) possible distinct mappings. By coincidence, one mapping can be
identical to another, but only if it is unpredictably replicated.

OPODS DATA SECURITY

Now with OPODS, even if an adversary’s trespassing goes undetected, he will
not be able to fake data prior to his break-in (assuming the mappings are truly
erased irreversibly as they are used). There is no need for any erasure of data
in order to protect the veracity of previously recorded monitoring data.42

But what about faking future data? Unless all of the unused mappings
can be erased instantly when trespassing is detected—and as discussed earlier,
this cannot be guaranteed—then the OPODS mappings will be available to the
adversary to fake future data.

The way to deal with this problem is to have the microprocessor pick each
mapping as it is needed from a cache of unused mappings in a manner known
only to the inspectors. This can most easily be done using a pseudo-random
number generator (PRNG), a simple iterative equation that deterministically
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and iteratively generates a new pseudo-random number from the previously
generated number. The new pseudo-random number points to which mapping
should be used next. The PRNG is initialized with a secret key (“seed”) known
only to the inspectors, although the PRNG algorithm itself need not be secret.
One common form for a PRNG is a linear congruent generator which produces
the pseudo-random sequence of integers {I0, I1, I2, . . .} in the range [0, M-1] via
the formula In+1 = (A In+ C) mod M, where the integer coefficients A, C, and
M must be carefully chosen, and I0is the seed.43−45

Figure 1 shows how this picking process might most effectively be imple-
mented. The PRNG picks a mapping from a cache of (for example) 100 OPODS
mappings. As each mapping is used, it is replaced by the next available map-
ping from a larger cache of mappings. The PRNG generates a 2-byte number,
0–65535. The modulus 100 of this value points to which of the 100 mappings

Figure 1: A schematic of the OPODS algorithm. In step 1, a pseudo-random number
generator (PRNG) picks one of the random mappings from a cache containing 100
random mappings. In step 2, this mapping is moved to the location where it will be used as
the current mapping for OPODS encryption of one hex digit. The moved mapping is
immediately replaced in the cache of 100 by the next available mapping in the main
cache (step 3). This mapping, in turn, gets immediately and irreversibly erased from the
main cache (step 4). In step 5, the current mapping is used to change one hex digit of the
plaintext (1 in this example) into one hex digit of ciphertext (E). Finally, the current
mapping is erased (step 6). By the end of step 6, useful information about the current
mapping is permanently lost to an adversary. If trespassing is detected, the current
iterative value of the PRNG (typically 2 bytes in length) is immediately erased, leaving an
adversary with no clues as to which of the 100 mappings in the cache of 100 was
intended to be used next. For even better odds (for the good guys), more than 100
mappings can be stored in the smaller cache.



194 Johnston et al.

in the smaller cache to use next. If trespassing is detected, erasing the current
2-byte value of the PRNG leaves the trespasser with no clue as to the order in
which future mappings would have been chosen, even though he will probably
know the PRNG algorithm and maybe the current mapping.46

The security of post-trespassing monitoring data, however, is not as high as
pretrespassing data, because for the former, one must detect the trespassing,
plus know for sure that the PRNG’s current 2-byte value has been irretrievably
erased. Fortunately, however, such an erasure can typically be accomplished in
2 microseconds or less in a modest microprocessor.47,48

Note that erasing just 2-bytes with OPODS is much faster than erasing
the 128-byte or 256-byte (or longer) keys for a MAC or a conventional high-
security cipher, respectively.49 This may have important security implications.50

Moreover, with a standard keyed hash, MAC, or cipher, erasing the key does
not guarantee data integrity because the hash, MAC, or cipher can theoretically
be broken—especially in international nuclear safeguards where the adversary
most likely knows the plaintext, the ciphertext, and the algorithm being used,
and has enormous resources. Full erasure of the current 2-byte PRNG value,
in contrast, leaves the adversary with no hope of reliably faking future data,
no matter how sophisticated his cryptoanalytic capabilities.

OPODS STORAGE REQUIREMENTS

With 16 non-repeating hex digits in each OPODS mapping, there are 16! = 2.1 ×
1013 possible mappings. This corresponds to a minimum of 44.3 bits needed to
represent any possible mapping.

As a practical matter, however, the simplest and fastest approach is to
store each mapping directly as 16 hexes = 64 bits. The advantage is that the
mapping is just a lookup table that requires no computation or decompression
of the mapping by the microprocessor in the field.51

A slightly more efficient way to store the mappings, but that requires only
modest extra computation by the microprocessor, is to store each mapping as
15 hexes instead of 16. The final hex does not need to be specified because it
is the only hex digit not yet appearing in the mapping. This approach requires
only 15 hexes = 60 bits per mapping.

Many other algorithms are possible for representing mappings that require
less storage, but more computation. For example, after the first 8 hex digits in
a mapping are specified, only 3 bits are needed to specify the next hex digit
from the list of the 23 = 8 remaining hex digits not yet chosen. After 12 hex
digits are chosen, only 2 bits are needed, and after 14 are chosen, only 1 bit is
needed. With this approach, 49 bytes are needed to fully specify a mapping. The
disadvantage to this “Remaining Digits Algorithm” is that more microprocessor
computation time is required to decompress each mapping as it is needed.
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Table 1: Storage and decompression requirements for various algorithms for
storing OPODS mappings.

Bytes of storage
Bits per needed per byte Decompression

Algorithm complexity mapping of plaintext complexity

List 16 Hex Digits 64 16 None
List 15 Hex Digits 60 15 Minimal
Remaining digits 49 12.2 Moderate
High-Low 46.41 11.61 High
Theoretical minimum storage 44.3 11.1 Very high
1On average.

Another potential algorithm, called the “High-Low Algorithm,” specifies
each hex digit in the mapping by up to four bits. These bits indicate whether
the hex digit in question is in the lower half of the ordered list of unchosen
hex digits, or the upper half. The half that the hex digit does not belong to
is then removed, and the question is asked again of the remaining ordered
list of unchosen hexes. This is repeated up to four times until the hex digit
is fully specified. As the mapping gets longer, the ordered list of unchosen
hex digits gets shorter, and fewer than 4 bits are required to specify each hex
digit. This algorithm requires, on average, 46.4 bits per mapping, illustrated in
Table 1.52

Even with the least efficient storage algorithm (the “List 16 Hex Digits”
Algorithm), OPODS does not require an impractical amount of storage. Each
GigaByte (GB) of plaintext would need only 16 GB of OPODS mappings, and
that storage gets freed up for other uses as each mapping gets used. Currently,
the retail cost of 16 GB of storage is under $3 for magnetic hard disk storage and
under $140 for flash memory. Not only are these prices lower for storage devices
purchased in volume, but the cost of storage continues to drop precipitously over
time, as shown in Figure 2.53

Another storage issue for microprocessors is the amount of random ac-
cess memory (RAM) available. Most conventional ciphers that one might try
to implement on a microprocessor require 50 to 2300 or more bytes of RAM,
yet standard low-cost 8-bit microprocessors typically have either 128 or 256
bytes.28 The OPODS scheme shown in Figure 1 would actually require only 2
bytes of RAM for the current PRNG iterative value.

A third storage issue is the amount of programming space required. Many
modern encryption schemes do not fit on current commercial microprocessors28

and advanced MAC algorithms are relatively large. With OPODS, in contrast,
the encryption algorithm is just a lookup table. It requires only a few dozen
BASIC programming lines, and only a few hundred machine instructions—the
exact amount depending on the OPODS mapping decompression scheme chosen
and the complexity of the PRNG being used.
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Figure 2: The decreasing retail cost over time of 1 GB of storage for magnetic hard disks
and flash memory. If this trend continues—even without new storage technologies
becoming available—it will be possible to store 1 GB of data nearly free by 2015.

OPODS SPEED

OPODS encryption was implemented on a Microchip PIC16F819 microproces-
sor ($4.00 quantity of 1) along with two 24FC515 (512K bit) memory chips
($4.68 each in quantity of 1). The software was written using the PICBASIC
PRO compiler.54

With this system, the computation time required to encrypt 1 byte of plain-
text is about 160 clock cycles, independent of the oscillator speed: 4, 8, or
20 MHz. (Thus it takes 8 microseconds per byte using a 20 MHz oscillator.)
A more efficient algorithm, and the use of assembly language programming in-
stead of the BASIC compiler, would undoubtedly increase encryption speed. By
way of comparison, the highly optimized Twofish encryption algorithm requires
1820 clock cycles per byte on an 8-bit microprocessor, but offers relatively low
levels of security and at most a 32-byte key.55

GENERATING OPODS MAPPINGS

Random OPODS mappings can best be generated from a one time pad
(OTP) of random hex digits, which have themselves been generated non-
deterministically using hardware (discussed in the next section). Generating
the OTP from a deterministic PRNG method (such as found on most comput-
ers) does not result in true random digits and is not recommended because an
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adversary may be able to predict its behavior, especially if large numbers of
OPODS mappings are stored in the monitoring hardware.56 PRNG security is
weak because computer PRNGs are well studied, plus there are only a small
number of other widely used PRNGs.57 Indeed, there are known instances of
people predicting PRNG values, thus “breaking” the PRNG.58

The problem with using an OTP of random hex digits to generate OPODS
mappings is that each OTP digit is equally likely, yet every OPODS mapping
must be made up of 16 random hex digits with each digit appearing exactly once.
One possible algorithm for building an OPODS mapping from a one time pad
involves simply appending the next random hex digit in the pad to the mapping
if that hex digit does not yet appear in the mapping, and discarding the hex
digit and skipping to the next random OTP hex digit in the pad if it does. This
method is straightforward and produces very random OPODS mappings if the
original OTP hex digits are random, but wastes an average of 60.644% ± 0.023%
of the OTP in order to avoid duplicate digits in a mapping. The algorithm is
referred to as the “Waste Algorithm.” An example is shown in Figure 3.

Another method for generating OPODS mappings from an OTP of random
hex digits is called the “Not Yet Used Algorithm.” See Table 2 for an example.

As the OPODS mapping is built, the authors keep track of which hex digits
do not yet appear in the mapping. When a new mapping is started this “unused
list” is pseudo-randomly scrambled using the computer’s PRNG. Each hex digit
in the OTP is then used to select which hex digit in the “unused list” will
be appended to the mapping.59 Once the mapping is complete with 16 non-
repeating hex digits, it is started again on the next mapping with a freshly
scrambled “unused list.” This algrithm wastes none of the OTP, but is somewhat
less secure in that it still relies on the computer’s PRNG.60

Random OPODS mappings can also be created by letting the OTP values
shuffle the hex digits {0123456789ABCDEF} in a random fashion using, for
example, the Fisher-Yates Shuffling Algorithm.61

Another approach is called the “Reseeding Algorithm.” It uses the
hardware-generated OTP random hex values to intermittently re-seed a com-
puter’s internal PRNG or other PRNG. The values generated by the PRNG are

Figure 3: An example of the “Waste Algorithm” for generating random OPODS mappings
(bottom row) from a hardware-generated one time pad of random hex digits (top row).
Any time one of the hex digits in the OTP already appears in the mapping being built, it is
skipped. In this example, the authors use the first 9 for mapping 1, but ignore the digit 9 the
second, third, and fourth time it appears (which is why the duplicate 9s are shown crossed
out). Once a mapping has its full complement of 16 non-replicated hex digits, the authors
building the next mapping. In this example, the completed mapping 1 =
{504936C71ADE28BF}, whereas mapping 2 begins {69FA0 . . .} .
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Table 2: An example of the “Not Yet Used” algorithm for generating a random
OPODS mapping from a one time pad of random hex digits.

Random hex Mapping under
Step from OTP Scrambled “unused list” construction

1 C EB46C1572A0D39F8 C
2 1 EB461572A0D39F8 CB
3 0 E461572A0D39F8 CBE
4 F 461572A0D39F8 CBE1
5 0 46572A0D39F8 CBE14
6 A 6572A0D39F8 CBE148
7 4 6572A0D39F CBE148A
8 2 65720D39F CBE148A7
9 B 6520D39F CBE148A70

10 1 652D39F CBE148A705
11 6 62D39F CBE148A7056
12 0 2D39F CBE148A70562
13 7 D39F CBE148A70562F
14 3 D39 CBE148A70562FD
15 5 39 CBE148A70562FD9
16 — 3 CBE148A70562FD93

In step 1, the authors just make the first hex digit in the new mapping equal to the next
available random digit in the OTP (C in this case). In step 2, the next random hex digit from the
OTP is 1. This is used to point to the hex digit in position 1 in the (pseudo-randomly scrambled)
“unused list,” which is B in this example, so B gets appended to the mapping. (The first digit in
the “unused list” is defined as position 0.) In step 3, the hex digit in the “unused list” at position
0 is E. In step 4, the F position is position 15, but there are only 13 hex digits in the “unused
list,” so the authors wrap around to position 2, that is, the hex digit 1. This process continues
until the 16th step, where the sole remaining hex digit in the “unused” list (3 in this example)
is automatically appended to the mapping. To build the next mapping, the authors create
a new pseudo-randomly scrambled “unused list” and new random hex digits from the OTP.

then used to build each random mapping. This algorithm is fast and makes
highly efficient use of the OTP. It is not, however, maximally random because
its behavior is dominated by a PRNG. Other algorithms for generating OPODS
mappings apart from the ones considered here are also possible.

Regardless of the algorithm, the computation time for generating OPODS
mappings can be relatively modest on a desktop computer.62 Using an Apple
2GHZ Intel Core Duo Mac computer, with programs written in REALbasic,63 the
time to generate 2 million OPODS mappings from an existing OTP—enough to
encrypt 1 Mega-Byte of plaintext—is 3.7, 1.1, and 3.1 minutes, respectively, for
the “Waste Algorithm”, “Not Yet Used Algorithm,” and Fisher-Yates Shuffling
(16 shuffles per mapping). A faster computer, plus more optimized algorithms
and computer code would substantially decrease these times.

GENERATING TRUE RANDOM DIGITS

The unpredictability of OPODS mappings depends critically on the unpre-
dictability of the OTP random digits from which they are built. Quantum
effects probably produce the greatest randomness.64 Fortunately, truly (or at
least highly) random sequences can be generated a number of different ways
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Table 3: Attributes of various means for physically generating random numbers in
hardware. All of these, except for the lava lamp and some electronic noise
techniques, are wholly or partially quantum mechanical in nature.3

Typical generation
Technique rate (bytes/min) Typical cost2

Keyboard & mouse 2–100 $0
Lava lamp 101–106 $100–$600
Background radioactive decay 5–10 $300
Source radioactive decay 20–6,000 $350–$800
Plasma disk/sphere1 200–1000 $100
Radio noise 103–104 $500
Photons & beamsplitter 106–108 $2000
Electronic noise 2 × 104–2 × 108 $300–$3500
1For the values in this row, 4 independent photodiodes are used to monitor the light output
from one plasma discharge disk or lamp.
2Typical cost for hardware and sensors in retail quantities, but not including the computer or
interface hardware used to acquire and record the random numbers.
3Plasma discharge is a somewhat quantum phenomenon intrinsically, but the exact spatial
and temporal behavior of the plasma discharge is probably additionally affected by cosmic
rays, which are very quantum mechanical. Whether the keyboard & mouse technique is
wholly or partially quantum mechanical depends on the extent to which human beings and
their decisions are governed by quantum mechanical events.

with relatively low cost hardware. They include measuring: radioactive decay
from either background radiation or a radioactive source65; electronic noise
(thermal or Johnson noise, avalanche noise, other amplifier noise, and electron
quantum tunneling)66; photons passing through a 50-50 beamsplitter67; noise
in a shuttered video camera; microphone noise68; the light from a lava lamp69;
radio-frequency noise (from de-tuned radios)69; computer hard disk noise70;
ping-pong balls such as in machines used by lotteries71; and the unpredictabil-
ity of the timing in how a human uses a computer keyboard or mouse.72 Table 3
summarizes some of these methods.

Five of the eight methods listed in Table 3 are used by the authors for gen-
erating random numbers, but the easiest is the use of photodetectors to monitor
plasma discharge disks and spheres that are sold as consumer novelty lamps
(see Figure 4). Up to four different photodetectors can be used to generate sep-
arate, uncorrelated random sequences per lamp. This novel technique is safe,
simple, and inexpensive, and can generate random numbers at moderately high
rates. It is also quite immune from calibration and threshold drift problems,
and from tampering at a distance. Sequences of digits generated in this way
have consistently passed all the tests for randomness applied to them.

INSTALLING THE OPODS MAPPINGS

The OPODS mappings must be installed or delivered to the monitoring hard-
ware by the inspectors in a manner that does not compromise its security. One
method is to have the random mappings stored on a flash memory thumb drive
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Figure 4: A consumer 2-dimensional Lumina Disk, left, and a 3-dimensional Buddha
Spherical Lamp, right, of questionable taste. These are sold to consumers as retail novelties
and decoration for approximately $19 and $25, respectively. The plasma discharge
“fingers” that each device generates fluctuate unpredictably in time and space. Up to 4
different photosensors, if sufficiently spaced, can measure the light levels at different points
on each device without any significant correlation or anti-correlation in their
measurements.

that is copied into the monitoring hardware in the field by the inspectors in
person when they first start it up. The thumb drive must then be fully erased,
or else kept in the possession of the inspectors. If the host (inspected) nation
is concerned about what information may be being passed into the hardware,
a “choose or keep” scheme73 can be employed wherein the inspectors lay out
three or five thumb drives (each with different OPODS random mappings) and
the host nation randomly picks the one to be installed, and gets to keep another
one to reverse engineer. The latter will not be used for monitoring, but can in-
stead be checked by the host to be sure it contains only random mappings, not
microprocessor code or non-random data.
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An inexpensive 4 GB flash memory thumb drive can store up to 364 million
OPODS mappings, enough to encrypt 182 MB of plaintext data.74 If one 2-byte
(0-65535) measurement is made and recorded each second, this is enough
OPODS mappings for almost 3 years of monitoring!

CONCLUSION

Improvements are needed to secure nuclear monitoring data given the cur-
rent unreliability of tamper-indicating seals, and the less than guaranteed se-
curity offered by conventional data authentication methods, whether hashes,
MACs, or ciphers. OPODS is an attractive alternative. Unlike conventional
data integrity methods, OPODS-encrypted monitoring data that are recorded
(or transmitted) prior to trespassing are fully secure—not just “computation-
ally secure”—even if the monitoring hardware fails to detect the trespassing
and nothing gets erased. Post-trespassing data is safe if the trespassing can be
detected and a mere 2-bytes quickly erased. Other data integrity techniques, in
contrast, require erasing at least 128 bytes, and sometimes considerably more.

OPODS has other advantages as well. It is very fast and computationally
simple—basically an erasable lookup table. Being so straightforward and low-
tech, OPODS is conducive to the transparency, simplicity, and high levels of
host comfort that are so important for international nuclear safeguards. Its
simplicity should also make OPODS relatively immune from adversarial “side
channel” attacks such as timing or power analysis methods75 and from chosen-
plaintext attacks.17 OPODS does not tie up large amounts of RAM, code space,
or microprocessor computation time, and is quite practical for implementing on
low-cost 8-bit microprocessors. Unlike some modern MACs and ciphers, OPODS
has no proprietary, export control, or licensing issues. Moreover, its security is
not compromised (unlike some other encryption or data integrity methods) if
the same plaintext message is encrypted more than once.

The relatively large amount of data storage required for OPODS actually of-
fers a security advantage. If an adversary were to use sophisticated techniques
to try to reconstruct erased OPODS mappings—a significant concern49—so that
he could change post-trespassing monitoring data, he would have a very large
amount of information to try to recover, making the task more difficult.

The disadvantages of OPODS include the requirements to have 11–16 bytes
of mapping data per byte of plaintext to be encrypted (although this storage
space is freed up for other uses as ciphertext is generated). OPODS also requires
large amounts of non-deterministic, hardware-generated random numbers, and
installation of the OPODS mapping data into the monitoring hardware in a
manner that keeps them secret. Unlike public-private key ciphers, OPODS is
not conducive to 3rd party authentication.76

OPODS was implemented on both a desktop computer and a low-cost 8-bit
microprocessor, and the authors found it easy to develop and use.
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