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Radiation portal monitors are starting to be deployed at overseas ports to prevent nu-
clear weapons from entering the U.S. in a shipping container. Current designs have
containers on trucks passing through a portal monitor at approximately 10 mph, before
being routed to one of several lanes at the port’s front gate for a driver identification
check. For a fixed cost of testing, which consists of the costs of radiation portal monitors
plus offsite x-ray and possibly manual testing of containers generating a false radiation
alarm that cannot be resolved by gamma-ray imaging, the neutron detection limits of
the current design are compared with those of two other designs that do not affect truck
congestion at the front gate. For a wide range of budgets, it is optimal to have six moni-
tors in each lane that simultaneously test a truck while it is being processed at the front
gate. This design is robust against the location (within the container) of the weapon and
reduces the detection limit (relative to the current design) by approximately a factor of
three (although the accuracy of this value is limited by the lack of publicly available
data) for practical budgets, which is enough to offset some shielding for a plutonium
weapon, but insufficient to detect an uranium weapon.

Received 13 September 2005; accepted 25 September 2007.
This research was supported by the Center for Social Innovation, Graduate School of
Business, Stanford University. The authors thank Terry Gibson of SAIC for sharing in-
formation about their detection equipment and the HKCTOA pilot project, and thank
the reviewer for comments that significantly improved the article. From 2003 to 2005,
Stephen Flynn served as a consultant to Science Applications International Corporation
in support of the development and deployment of the Integrated Container Inspection
System (ICIS) pilot project in Hong Kong.
Address correspondence to Lawrence M. Wein, Graduate School of Business, 518 Memo-
rial Way, Stanford University, Stanford, CA 94305-5015. E-mail: lwein@stanford.edu

211



212 Wein et al.

INTRODUCTION

Preventing nuclear materials and weapons from being smuggled into, or
through, U.S. seaports was a key topic in the 2004 U.S. Presidential Debates,
and has become one of the highest priorities of the Department of Homeland
Security. This task requires that containers be tested at overseas ports for long
enough to detect fissile material such as highly enriched uranium, while not
increasing congestion at these ports. An important step toward this goal is a
pilot demonstration project sponsored by the Hong Kong Container Terminal
Operators Association (HKCTOA) that is being performed in two marine con-
tainer terminals at the world’s second-busiest port. The project uses Science
Applications International Corporation’s (SAIC) Integrated Container Inspec-
tion System (ICIS), which consists of three elements:1 an Exploranium Radia-
tion Portal Monitor (RPM), which measures neutron and gamma-ray emissions
as a container truck drives through a portal, the VACIS gamma-ray imaging
system, which takes a two-dimensional image of the container with the hope
of identifying dense material that can shield the emissions, and the Optical
Character Recognition System, which records the unique container identifica-
tion number that is located on each container. The radiographic profile and
gamma image are stored in a computer file for subsequent analysis and re-
view. Because the human analysis of each scan requires approximately two
minutes, resources are not currently available to also perform 100% scan anal-
ysis. Legal shipments generate numerous gamma-ray alarms at the RPM2 and
consequently the only scans that are analyzed are those corresponding to con-
tainers that trigger a neutron alarm; although not part of the HKCTOA project,
U.S. Customs and Border Protection could also review the images from contain-
ers it targets as suspicious using its Automated Targeting System (ATS). ATS
is an expert system that associates data provided in a cargo manifest with
intelligence and other potential indicators that suggest that a container has
a heightened risk of having been compromised by criminals or terrorists. If
scan analysts cannot make a satisfactory determination that the contents of
a container pose no risk, they can require that the container be removed from
the marine terminal and transported to a customs inspection facility where it is
scanned again using a high-energy x-ray imager. In the event that these results
still prove inconclusive, the final recourse is for inspectors to open the container
and physically remove and examine its contents.

The HKCTOA project is successfully proving that 100% passive radiation
detection plus image scanning can be performed at the world’s second largest
port without disrupting the normal flow of truck traffic entering the marine
terminals; in fact, this approach is being implemented on a small scale with
6 overseas ports, which cover 7% of in-bound cargo.3 However, the HKCTOA
project does not directly assess the other vital requirement for a successful sys-
tem: whether fissile material can be reliably detected by RPMs. It is generally
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believed that RPMs are capable of detecting moderately shielded plutonium
but incapable of detecting highly enriched uranium.4 A recent mathematical
study5 suggests that longer RPM testing times could improve the likelihood of
detecting highly enriched uranium, but at the expense of increased congestion.
In this study, these ideas are taken a step further, by comparing the spatial
design used in the HKCTOA pilot project to two other designs that do not affect
congestion at the front gate, but make more efficient use of the RPMs. More
generally, the goal is to identify a RPM deployment strategy that minimizes the
detection limit, defined here as the neutron emissions level (in neutrons/sec) at
which detection can be achieved with probability 0.95, subject to a fixed budget
for RPM and offsite testing. The optimal deployment involves a complex trade-
off of exploiting time and space. The time aspect is straightforward because the
signal-to-noise ratio increases as the testing time increases. The spatial aspect
stems from the facts that a terrorist can place a weapon anywhere in the 40-ft
container and the number of neutrons detected by a RPM is inversely propor-
tional to the square of the distance between the weapon and the RPM. Hence,
for a given budget that allows for multiple RPMs, it is not clear whether it is
preferable to have several RPMs simultaneously monitoring a single container
(in the hope that one of the RPMs is close to the weapon) for a certain amount of
time, or to have one RPM monitoring a container but with an increased testing
time.

THE MODEL

The mathematical model, which is formulated in the Appendix, includes a
queueing model at the front gate, a neutron emissions and detection model,
and a cost model.

The Queueing Model
Queueing theory is the mathematical study of waiting lines.6 In a queue-

ing model, “customers” arrive randomly to a set of “servers,” who provide the
customers service, typically one at a time (each customer’s service time is also
random) and in a first-come first-served fashion. The goal of queueing theory is
to predict the amount of congestion in the system (e.g., the total number of cus-
tomers in the system) under steady-state conditions (i.e., after the stochastic
system has been operating for a long period of time) in terms of the statistical
characteristics of the arrival and service processes.

In the queueing model (Figure 1a), trucks play the role of customers. They
arrive to the terminal according to a Poisson process (i.e., the time between
consecutive arrivals is an exponential random variable) at a rate of 3.88/min
(all parameter values in the model are estimated in the Appendix and appear
in Table A1 of the Appendix), and enter a single waiting line that feeds m = 4
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Figure 1: (a) The three spatial deployment designs. A single aggregated queue feeds four
lanes, and each lane has room for two container trucks. The numbers in parentheses refer
to the numbers of the designs that have RPMs (or sets of RPMs) at specific locations:
Design 1 has a single RPM far from the front gate, Design 2 has a single set of n RPMs at the
front position of the aggregated queue, and Design 3 has N RPMs in total, which consist of
a set of n RPMs at the front position in each of the 4 lanes, and a set of n RPMs at each of
the front N

n − 4 positions of the aggregated queue. (b) The n RPMs within each set in
Designs 2 and 3 are positioned so that they each monitor an interval (measured along the
length of the 40-ft container) of length 40

n ft, and each is located at the center of its
interval, as shown in the n = 4 case.
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lanes at the front gate of the terminal. A Poisson arrival process is valid if each
customer arrives independently of one another,8 which is the case here, aside
from the batching of traffic that occurs due to traffic lights on the roads leading
directly to the terminal; based on empirical data, there is a long history of using
queueing models with Poisson arrivals to model vehicular traffic at toll booths
(e.g., Ref. [9]). To avoid server idling in these lanes, up to l = 2 container trucks
are allowed to queue in each lane, and if there are more than lm = 8 trucks in
total, then the additional trucks wait in a single aggregated queue. Each lane
has a human server that verifies the identity of the truck’s driver and tells
the driver where in the shipyard to deposit the container. This service time is
random with mean 60 s and coefficient of variation (i.e., standard deviation
divided by the mean) 0.5. Let Q represent the steady-state number of trucks in
the system (in queue plus in service). An analysis in §A of the Appendix shows
that Q can be approximated by a geometric random variable with a mean of 24
trucks, which leads to an average of 6 trucks for each of the 4 lanes. This level of
congestion is consistent with the observations of the HKCTOA project. Indeed,
if the demand-to-capacity ratio of 3.88/4 = 0.97 was to increase above 1.0, then
the queue length would dramatically increase to an impractical level,6 and there
is little economic incentive for terminal operators to invest in significant excess
capacity (i.e., additional lanes) that would reduce queues to negligible levels.

The RPM Model
Because of the lack of specificity of gamma-ray measurements from RPMs

(many legal shipments emit a large number of gamma rays),2 the emissions
and detection model, which specifies a RPM’s detection probability and its false
positive probability, is restricted to neutrons. Emissions can emanate from
three sources: the weapon, the contents of a typical container that contains
no weapons, and the background level in the absence of containers. However,
because 163,000 roadside field tests for container trucks resulted in no neutron
alarms,7 neutron emissions from the contents of a weaponless container are ig-
nored, and only emissions from the background and a weapon are considered.

First, the neutron emissions detected by a RPM due to testing a weapon-
free container are described. In the RPM designs, which are constructed later,
a truck sometimes drives through a RPM and at other times it remains in
place at the RPM. The number of neutrons detected at a RPM is a Poisson
random variable with mean Aεb(td + tp), where A = 0.3 m2 is the area of a
neutron detector,10 ε = 0.14 is the efficiency of a neutron detector,10 b is the
background rate, td is the drive-through time and tp is the in-place time. To
capture the fact that the background rate varies with solar magnetic activity
and magnetospheric storms, time of day, and changes in the local environment,
b itself is assumed to be a random variable. More specifically, using data from
extensive controlled experiments7 and the mean background neutron rate of
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50 neutrons/m2·sec in Ref. [10], b is taken to be a lognormal random variable
(i.e., ln b is a normal random variable) with median 43.1 neutrons/m2·sec and
dispersal factor 1.73 (implying that 95% of the time, the background rate is be-
tween 43.1

1.732 = 14.4 and 1.732(43.1) = 129.0 neutrons/m2·sec). Hence, the num-
ber of neutrons detected at a RPM is actually a mixture of Poissons,11 and its
probability mass function is given in Equation 3 of the Appendix. It is assumed
that for a given container, the same realization of the random variable b is used
for all RPMs testing it because the background neutron rate is not likely to
change substantially over the scale of time that a container is in the system.

For a weaponized container (i.e., a container containing a weapon), the
neutron emissions detected by a RPM is a Poisson random variable with mean
Aεb(td + tp) + W, where W respresents the neutron emissions at the RPM due
to the weapon. As with the background term, the weapon term W has an in-
place component and a drive-through component. If the neutron source of the
weapon is S, which is allowed to vary in the model, then the in-place term
is AεStp/4πd2,10 where d is the distance between the RPM and the weapon,
which (as explained later) depends on both the the spatial deployment and
the weapon location. The drive-through term is derived in Equation 6 of the
Appendix and incorporates the fact that the distance between the weapon and
the RPM changes as the truck drives through the RPM.

The Three Designs
The three designs are illustrated in Figures 1a and 1b. In Design 1, which

is employed in the HKCTOA pilot project, the RPM is located approximately
75 m from the front gate, and trucks pass through it at 10 mph. Because trucks
do not sit in place at a RPM in Design 1, there is no need to consider deploying
a set of RPMs to simultaneously monitor a container. In contrast, in Designs 2
and 3, there is a set of n RPMs that simultaneously monitor a container at a
given position in the queue. Because each RPM requires approximately 6 ft of
space as measured along the length of the 40-ft container, the decision variable
n is restricted to be an integer value between 1 and 6. The n RPMs within a
set are positioned so that they each monitor an interval (measured along the
length of the 40-ft container) of length 40

n ft, and each is located at the center
of its interval (Figure 1b).

In Design 2, a single set of n RPMs is located at the front position of the
aggregated queue. If an arriving truck finds less than 8 trucks in the system,
then he drives through the set of RPMs at 10 mph and immediately enters one of
the 4 lanes. If an arriving truck finds 8 or more trucks in the system, then he is
in place at the set of RPMs for 15 s (on average, trucks in the aggregated queue
move forward one position every 15 s because there are 4 trucks in service, each
with a mean service time of 60 s) and his drive-through speed is 5 mph (because
he needs to come to a full stop at the set of RPMs).
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Design 3 has N RPMs in total, which are deployed as N
n sets of n RPMs.

One set is located at the front queue position in each of the 4 lanes, and the
remaining N

n − 4 sets are located at the front N
n − 4 positions in the aggregated

queue, where the decision variables N and n are chosen so that N
n − 4 is a

nonnegative integer. Arriving trucks drive at 10 mph until they reach the end
of the queue. As in Design 2, if there are less than 8 trucks in the system, the
arriving truck drives through all the RPMs in the aggregated queue at 10 mph
and then immediately enters one of the 4 lanes, where it resides at the set of
RPMs in this lane for 60 s and drive through it at 5 mph. At the other extreme, if
there are more than N

n + 4 trucks in queue (which is the 8 trucks in the 4 lanes
plus the N

n − 4 positions in the aggregated queue), then the truck will initially
stop in the part of the aggregated queue where there are no RPMs, and then
will subsequently drive through the N

n − 4 sets of RPMs at 5 mph and will stay
in place there for 15 s, and finally will reside for 60 s (and drive through at 5
mph) at the set of RPMs in one of the 4 lanes. In the intermediate case (which
is specified precisely in the Appendix) in which the queue length upon arrival
is between 8 and N

n + 4 trucks, the arriving truck will drive through some sets
of RPMs in the aggregated queue at 10 mph without residing in place, and will
drive through other sets of RPMs in the aggregated queue at 5 mph and will
stay in place for 15 s, before entering one of the 4 lanes, where it will stay in
place for 60 s and drive through a RPM at 5 mph.

The Weapon Location
During the time that a container is in place at a set of RPMs, the distance d

between the weapon and a RPM depends upon the locations (as measured along
the 40-ft dimension of the container length) of the weapon and the RPM, as well
as the minimum distance (taken to be 2 m)7 between the weapon and the RPM
as the truck drives through the RPM (Figure 1b). Two simplifying assumptions
are made concerning the distance d between the weapon and the RPM. First,
the weapon and the RPM’s sensor are assumed to be at the same height so that
the model can be constructed in two spatial dimensions. Second, the weapon is
placed in the middle of the container widthwise (Figure 1b). Actual RPMs have
sensors on both sides of the container. Given that the inverse square function
(the emissions measured from a distance d is proportional to d−2 [Ref. 10]) is
convex, if the readings from the two sensors are summed, then it is indeed
optimal (in the sense of avoiding detection) for a terrorist to place the weapon
in the middle of the container widthwise. Hence, although Figure 1b shows
sensors on only one side of the container, one can view the model as summing
the detected emissions from both sides of the RPM.

The weapon location is assumed to be a random variable that is uniformly
located along the 40-ft length, and then choose the design variables to minimize
the mean detection limit, where the expectation is taken over this uniform
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random variable. To assess the robustness of Designs 2 and 3, the detection
limits are also computed when the weapon is placed as close to (i.e., the best
case), and as far from (i.e., the worst case), the nearest RPM. In the best case,
the weapon is located such that when the truck is in place, the weapon and
one of the RPMs are perfectly aligned lengthwise and the distance between the
weapon and one of the RPMs in the set is 2 m. In the worst case, the weapon is
located such that when the truck is in place, the lengthwise distance between
the weapon and the closest RPM in the set is at its maximum, which is 40

2n ft,

and the distance between the weapon and the closest RPM is
√

(2 m)2 + ( 40
2n ft)2.

The RPM Threshold Levels
For Design 1, a single random emissions reading is obtained—call it X if

it comes from a weapon-free container and Y if it comes from a weaponized
container—as a truck drives through a single RPM. If n̄ denotes the neutron
threshold level above which an alarm is generated, then the detection proba-
bility for a given source S is d(S) = P(Y > n̄). The detection limit is defined to
be the source term S such that the detection probability d(S) equals 0.95. The
false positive probability is P(X > n̄).

It is not as straightforward to decide when to generate an alarm in De-
signs 2 and 3 for two reasons: multiple emissions readings are obtained and
the amount of testing time (both drive-through and in-place) depends on the
number of trucks in the system at the time of a truck arrival. To keep the
complexity manageable, a single threshold is still used, which is based on the
multiple emissions readings. However, because the queue length upon arrival
is observable, this threshold is allowed to take on a different value for each
possible value of the queue length Q; in particular, the threshold value when
Q = k is denoted by n̄k.

For Design 2, emissions readings are obtained from each of n RPMs in a
set (let the random variables be Xj and Yj for j = 1, . . . , n), and one of these
RPMs will be closest to the weapon. Hence, a single threshold is again used
(but now it can have a different value for each possible value of the queue
length Q), but based on max j=1,...,n Xj and max j=1,...,n Yj , so that the detection
probability and false positive probability when Q = k are P(max j=1,...,n Yj > n̄)
and P(max j=1,...,n Xj > n̄k). Note that because the testing time in Design 2 only
depends on whether Q ≤ 7 or Q ≥ 8, only two different values for the threshold
are needed. In each of these two cases (i.e., Q ≤ 7 and Q ≥ 8), the detection
limit is computed to be the source term that gives a 0.95 detection probability,
and then the mean detection limit is found, which is the probability that Q ≤ 7
times the detection limit when Q ≤ 7, plus the probability that Q ≥ 8 times the
detection limit when Q ≥ 8. Similarly, the overall false positive probability is
the probability that Q ≤ 7 times the false positive probability when Q ≤ 7, plus
the probability that Q ≥ 8 times the false positive probability when Q ≥ 8.
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In Design 3, emissions readings are obtained from the RPM in position j
(within the set) in set i for j = 1, . . . , n and i = 1, . . . , N

n − 3 (i.e., the set in the
lane plus the N

n − 4 sets in the aggregated queue). Let the emissions readings for
the weapon-free container and the weaponized container by these RPMs be the
random variables Xij and Yij , respectively. Because the weapon does not move
during its sojourn through the testing system, for all sets the weapon will be
closest to one of the n positions within a set; that is, for some value j = 1, . . . , n,
let us call it j∗, one would expect (ignoring statistical variability) Yij∗ > Yij for all
j �= j∗ and for each i = 1, . . . , N

n − 3. Hence, the emissions readings are summed
over i (i.e., over the various sets) for each specific position in the set, and then
the maximum over position j is found, which is likely to be achieved at position
j∗. That is, a single threshold (that varies with the value of the queue length

Q) is again used, but based on max j=1,...,n
∑ N

n −3
i=1 Xj and max j=1,...,n

∑ N
n −3

i=1 Yj , so
that the detection probability and false positive probability when Q = k are

P(max j=1,...,n
∑ N

n −3
i=1 Yj > n̄k) and P(max j=1,...,n

∑ N
n −3

i=1 Xj > n̄k). The mean detec-
tion limit and the overall false positive probability are computed by taking the
expectations of these quantities with respect to the probability mass function
of the queue length Q.

For Design 3, because the testing time takes on one value for Q ≤ 7 and
takes on a second value for Q ≥ N

n + 3 (in this case, a truck resides in-place
at all sets of RPMs in the aggregated queue), the thresholds n̄k are chosen
so that they take on one value for k ≤ 7 and a second value for k ≥ N

n + 3. To
ease the computational burden for Design 3, for k = 8, . . . , N

n + 2, the threshold
n̄k is forced to be such that the corresponding false positive probability when
the queue length equals k (there is a one-to-one correspondence between the
threshold n̄k and the false positive probability when the queue length equals
k, for any given values of N and n) is a linear interpolation between the false
positive probabilities when k = 7 and k = N

n + 3.

Costs
To calculate the testing costs, it is assumed that the only VACIS scans that

are analyzed are those that fail passive testing, plus an additional fraction
u = 0.05 of untrusted containers that are flagged by the ATS,12 which more
accurately captures how this testing system might be used by U.S. Customs and
Border Protection. It is assumed that the VACIS test correctly diagnoses the
false positives or the untrusted containers with probability pv = 0.95, and that
a fraction 1 − pv of the containers undergoing scan analysis need to undergo
further testing offsite.

The expected total annual cost has two components, the annualized cost of
each portal monitor, and the cost of offsite testing. The cost of scan analysis,
which takes only two minutes, is ignored because it is dominated by the offsite
testing cost, which can take several hours. Each RPM costs $100,0001 and it
is annualized over a five-year horizon,5 so that the annual cost per RPM is
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cp = $20, 000. It is assumed that the same amount of labor is required to run
the RPMs for all three designs: one employee may be needed to direct traffic
and one employee can monitor test alarms.

To compute the mean offsite testing costs, it is assumed for lack of data
that a high-energy x-ray provides conclusive results for px = 0.5 of the contain-
ers it scans, and the others need to be opened manually. The current charge
to importers for offsite testing in the HKCTOA Project is $200–300 if only a
high-energy x-ray is needed, and $1500–2000 if the container also needs to be
unladed. The x-ray cost is taken to be cx = $250 and the additional cost of a
manual test is cm = 1500. Hence, the mean offsite testing cost per container
that undergoes scan analysis is co = (1 − pv)[cx + (1 − px)cm] = $50.

RESULTS

Each design is characterized by its mean detection limit versus cost curve, under
the assumption that the weapon location is uniformly distributed along the 40-
ft length of the container. The neutron threshold level n̄ is varied to generate
these curves for Design 1, which is the currently implemented design. For each
fixed cost, the values of the set size n and the thresholds n̄k for Design 2, or the
values of N, n, and n̄k for Design 3, are chosen to minimize the mean detection
limit subject to a constraint on the annual cost. By solving these optimization
problems for various values of the cost, the detection limit versus cost curves
are generated for Designs 2 and 3. For the optimal versions of Designs 2 and 3,
the detection limit versus cost curves are also computed when the weapon is in
its best-case location and its worst-case location.

Before comparing the designs, the annual budget values on the horizontal
axis in Figure 2 are put into perspective. The annual cost with a single RPM
is $5.12 M, $5.22 M, and $6.09 M if the false positive rate is 0, 10−3, and 10−2,
respectively. That is, the fixed annual cost of testing the untrusted containers
flagged by the ATS is approximately $5.1 M, and the annual cost when a single
RPM is deployed is typically in the range of $5.2 M–6.1 M.

As shown in Figure 2, Design 2 is the best of the three designs for annual
budgets below $5.4 M and Design 3 is the best design for budgets over $5.4
M; the nonsmooth behavior of the Design 1 curve in Figure 2b is because the
neutron threshold level takes on discrete values that are much smaller than
those in Designs 2 and 3. For annual budgets between $5.6 M and $10 M, the
detection limit for Design 3 is approximately a factor of three less than the
detection limit achieved by Design 1. There are decreasing marginal returns to
investments in all three designs; for example, for Design 3, the detection limit
can be reduced from 100 k to 20 k neutrons/sec by increasing the annual budget
from $5.2 M to $5.4 M, from 20 k to 11 k by increasing the budget from $5.4 M
to $6 M, and from 11 k to 6 k by increasing the budget from $6 M to $10 M, but
over $30 M/yr would be needed to lower the detection limit to 3 k neutrons/sec.
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Figure 2: The mean detection limit vs. annual cost for the three designs. The worst-case
and best-case detection limits for the optimal versions of Designs 2 and 3 are also given.
The detection limit is the source emissions for which the detection probability is 0.95. The
annual budget is (a) between $5.2 M and $6 M; and (b) above $6 M.

The emissions rates of a former Soviet nuclear warhead made of plutonium and
uranium are 400 k neutrons/sec and 30 neutrons/sec, respectively.10 Hence. Fig-
ure 2 suggests that all three designs can detect moderately shielded plutonium
but cannot detect highly enriched uranium, which is in agreement with current
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thinking.4 In other words, using Design 3 rather than Design 1 and/or increas-
ing the annual budget from $5.5 M to $10 M would offset a modest amount of
shielding for plutonium weapons.

For both Designs 2 and 3, except for very small budgets (e.g., < 5.9 M/yr),
it is optimal to use the maximal set size of six RPMs (i.e., n = 6). That is, it is
more important to have a RPM to be in the proximity of the weapon than it is
to increase the testing time. The use of six RPMs in a set creates a detection
system that is robust with respect to weapon location, as indicated by the tight
clustering of the worst-case and best-case detection limits for each of Designs 2
and 3 when the budget is greater than $5.6 M (and the optimal set size is at least
five); in contrast, for budgets of $5.2 M, $5.3 M, $5.4 M, and $5.5 M, Design 3
can only afford sets of size n = 1, 2, 3, and 4, respectively, and the worst-case
(and hence mean) detection limit degrades dramatically.

Moreover, for Design 3, it is optimal to deploy exactly four sets of RPMs (i.e.,
N
n = 4), one in each of the four lanes and none in the aggregated queue. The
intuition behind this nonobvious result (note that n = 6 and N

n = 4 holds only for
the particular set of parameter values considered here) is that trucks are tested
for 60 s by the RPMs in the lanes with probability one, but are tested for 15 s
by the RPMs in the aggregated queue only in the case when the queue length
is large (at least eight), and hence it is optimal to spend additional money by
lowering the neutron threshold limit than by adding more RPMs. In Design 2,
the threshold levels are chosen so that the false positive probability when the
queue is large is nearly the same as when the queue is small. For the optimal
version of Design 3 (i.e., N

n = 4), there is only a single threshold level and the
false positive probability is independent of queue size. When the inequality
N
n > 4 was imposed in the model, the false positive probabilities varied by less
than 0.02 with queue size.

DISCUSSION

The existing design has two shortcomings: the container testing time is only 3 s
and the RPM is idle most of the time. Offsite testing is the key cost-driver and
the signal-to-noise ratio increases with the testing time, suggesting that longer
RPM testing times that do not impose additional congestion should improve
performance. The signal is also proportional to the inverse square distance
between the nuclear weapon and the sensor, suggesting that using multiple
sensors for each truck might improve the robustness of the detection system
with respect to the location (within the container) of the weapon. The results
confirm these hypotheses and identify (via Design 3) the optimal mix of spa-
tial and temporal exploitation for neutron testing by RPMs. The results only
pertain to the detection of neutron emissions; spectroscopic gamma portal mon-
itors, which are able to distinguish fissile material from other legal shipments
that emit radioactivity, are currently in development,4 and the methods used
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here can be applied to improve the deployment of these portal monitors in the
future.

However, there are several caveats. First, the sensitivity and specificity
data that are used are from the late 1990s7 and may not be representative of
the equipment that is currently in use, whose detailed performance metrics
are proprietary; moreover, the area A taken from Ref. [10] is probably smaller
than that used by a RPM that has sensors on both sides. This precludes the
direct use of Figure 2 by the U.S. government or a nuclear smuggler, and sug-
gests that readers should focus on the relative performance—rather than the
absolute performance—of the designs. The experiments in Ref. [7] were per-
formed over a period of months (May-September 1998 and again in the spring
of 1999), which should be enough time to incorporate the range of variation
in the mean background rate. Although these data are sufficient to calibrate
(e.g., estimate the parameters for) the model, they are insufficient to actually
validate the form of the radiation sensor model described in section B of the
Appendix. Indeed, some of these designs were also assessed using the radiation
sensor model in section A of the Appendix to Ref. [5], which led to significantly
larger improvements in performance (i.e., larger reductions in the detection
limit relative to Design 1) than seen in Figure 2 (data not shown). Although the
detection model used in this article is viewed as being superior to the one used
in Ref. [5] (the model in Ref. [5] used a mixture of normals, and so the number
of neutrons detected was a continuous random variable that could occasionally
take on negative values), it is difficult to place much confidence in the quanti-
tative results reported here until the form of the model is validated. However,
due to the proprietary nature of the data in this research area, sufficient data
to calibrate the model may never become publicly available.

Nonetheless, the qualitative nature of the results should still hold, and De-
sign 3 should offer at least a modest improvement over Design 1. The relative
performance of Design 1 versus Design 3 is very insensitive to the mean ser-
vice time at the front gate (Figure 3a). Moreover, Design 1 and the optimal (i.e.,
N
n = 4) version of Design 3 are independent of the queue length, and hence of
the amount of congestion. Another key factor that dictates the relative amount
of improvement possible is the mean offsite testing cost per container that un-
dergoes a scan analysis (co) divided by the RPM cost (cp). There is considerable
uncertainty in co because there is no documented data on the fraction of con-
tainers that are diagnosed by VACIS or by high-energy x-ray, and the x-ray
and manual testing costs may vary by terminal and may not equal the prices
charged to importers. Nonetheless, Figure 3b shows that the difference in per-
formance between Designs 1 and 3 is nearly independent of co over practical
ranges (although, as expected, as co increases with a fixed budget, the detection
limit also increases for both designs), and hence is also insensitive to the RPM
cost cp. Finally, although the focus is on the congestion at the front gate, the
more false positives there are, the more disruption to the ship loading plans.
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Figure 3: Sensitivity analysis. (a) The mean detection limit for Designs 1 and 3 at a fixed cost
of $10 M/yr, as a function of (a) the mean processing time at the front gate (µ−1), which
has a base-case value of 60 s; and (b) the mean offsite testing cost per container
undergoing scan analysis (co), which has a base-case value of $50.

Designs 2 and 3 have fewer false positives for a given cost because they use more
RPMs, and hence for a given cost Designs 2 and 3 are actually less disruptive,
that is, fewer containers miss their scheduled voyage, than Design 1.
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CONCLUSION

Detecting highly enriched uranium and plutonium at ports is one of the most
important and challenging problems in homeland security. In the model, an
aggressive spatiotemporal deployment of RPMs, which uses a set of six RPMs
in each truck lane to simultaneously monitor a truck while it is waiting to be
processed at the front gate, offers a reduction (by a factor of three, although
the accuracy of this value is difficult to assess) in the neutron detection limit.
Such a reduction is not sufficient to detect highly enriched uranium, but should
offset some shielding around a plutonium weapon. If such an improvement led
smugglers to use more shielding, then detection via radiographic scan analysis
would increase if the scans were analyzed. As the deployment of RPMs is rolled
out, this design should be given serious consideration. The geometry of the
problem (i.e., 40 × 8 × 8 ft container, RPMs that are at least 2 m away from
the center of the container widthwise, and a maximum of six RPMs that fit
lengthwise along container, see Figure 1b) suggests that the best opportunity
for further improvements (beyond the ones explored here) in exploiting the
spatial aspects of the problem is to design RPMs so that the sensors on both
sides can be placed up against the sides of the container during in-place testing.
This enhancement would approximately double the detector counts because the
inverse square distance would be reduced from ( 1

2 m )2 to ( 1
4 ft )

2.
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APPENDIX

This appendix describes the mathematical model that generated the results
reported in the main text. The queueing model is in section A, the RPM detection
model is in section B, the total cost is derived in section C, and the detection
limit vs. cost curves are constructed in section D. The model’s parameters and
their values are given in Table A1.

A Queueing
In the queueing model, trucks arrive at the terminal according to a Pois-

son process with rate λ, and enter a single line that feeds m = 4 lanes at the
front gate of the terminal. To avoid server idling in these lanes, up to l = 2
container trucks are allowed to queue in each lane, and if there are more than
lm = 8 trucks in total, then the additional trucks wait in a single aggregated
queue. Each lane has a human server with a service time that is random with
mean µ−1 = 60 s and coefficient of variation (i.e., standard deviation divided
by the mean) cs = 0.5. Although there are no available data on the service time
variability, the service times are likely to be less variable than an exponential
random variable, which has a standard deviation equal to the mean, because
of the uniformity and simplicity of the tasks involved. The traffic intensity is
given by ρ = λ

mµ
, which is the fraction of time over the long run that each server

is busy. Let Q represent the steady-state number of trucks in the system (in
queue plus in service). The heavy-traffic approximation (e.g., Equation 2.13 in
Ref. [1]), which is reasonably accurate for moderate mand ρ close to, but smaller
than, one, states that Q is exponentially distributed with mean

E[Q] = ρ2

1 − ρ

1 + c2
s

2
+ mρ. (1)

Letting E[Q] = 24 (there are approximately six trucks per lane in Ref. [2])
and solving Equation 1 for λ, gives λ = 3.883/min and ρ = 0.971, which indeed
is consistent with the heavy-traffic regime. It is assumed that Q is geometrically
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Table A1: Descriptions and values of model parameters.

Notation Description Value

λ Truck arrival rate 3.883/min
m Number of lanes 4
l Trucks/lane after disaggregation 2
µ Service rate 1/min
cs Coefficient of variation of service times 0.5
v1 Drive-through velocity if not stopping 10 mph

Drive-through velocity if stopping 5 mph
L Length of container 40 ft
A Area of neutron detector 0.3 m2

ε Efficiency of neutron detector 0.14
eθ Median neutron background rate 43.1 neutrons/m2·sec
eσ Dispersal factor of neutron background

rate
1.73

r Distance of neutron detector 2 m
S Neutron source 400,000 neutrons/sec

(plutonium)
30 neutrons/sec (uranium)

u Fraction of untrusted containers 0.05
pv Probability of diagnosis by VACIS 0.95
cp Annual cost per RPM $20,000
px Probability of diagnosis by high-energy

x-ray
0.5

cx Cost of offsite high-energy x-ray test $250
cm Cost of offsite manual test $1500

distributed (with a mean of 24) rather than exponentially distributed because
Q is integer-valued. More specifically, it is assumed that

Pr(Q = k) = p(1 − p)k for k = 0, 1, 2, . . . , (2)

where p = 0.04.
The more complex approximation for the probability distribution of Q given

in section 5.4 of Ref. [1] was also considered but found to be no more accurate
(by comparing it to the distribution computed via Monte Carlo simulation) than
the approximation in Equation 1.

B RPM Performance
The performance of a RPM is characterized by its detection probability d

and its false positive probability f . Emissions can emanate from the weapon
and the background level. The performance for Design 1 is derived in section
B.1 and the performance for Designs 2 and 3 is derived in section B.2.

B.1 Performance of Design 1
In Design 1, each container travels through the RPM at v1 = 10 mph. If the

authors denote L = 40 ft to be the length of a container, then the testing time
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is td = L
v1

= 2.73 s, where the superscript is mnemonic for drive-through. The
variable X denotes the number of neutrons detected from testing a weapon-free
container. It is assumed that X is a Poisson random variable with parameter
(i.e., mean) Aεbtd, where A = 0.3 m2 is the area of a neutron detector,3 ε = 0.14
is the efficiency of a neutron detector,3 and b is the background rate, which
itself is a log-normal random variable with median eθ and dispersal factor eσ

(i.e., ln b is a normal random variable with mean θ and standard deviation σ ).
Hence, the probability mass function of X is

P(X = x) =
∫ ∞

0

e− (ln y−θ )2

2σ2 (Aεytd)xe−Aεytd

√
2πσ yx!

dy for x = 0, 1, . . . . (3)

The mean neutron background rate is assumed to be 50 neutrons/m2·sec,3 which
implies that θ = ln 50 − σ 2

2 . To estimate σ , it is noted that when the detection
time is t = 10 s, the distance between the sensor and the source is r = 2 meters
and the source is S = 20 k neutrons/sec, the false positive probability and the
false negative probability from extensive controlled experiments (with a sta-
tionary source) were 10−4 and 10−3, respectively.4 The emissions detected from
the stationary source in these experiments is modeled as AεSt

4πr2 .3 Solving

P(X > n̄) = 10−4, (4)

P
(

X + AεSt
4πr2

< n̄
)

= 10−3, (5)

for the threshold level n̄ and σ yields σ = 0.546, and hence the median back-
ground rate is eθ = 43.1 neutrons/m2·sec and the dispersal factor is eσ = 1.73.

The variable Y is defined to be the number of neutrons detected from testing
a weaponized container. So that only two spatial dimensions need to be consid-
ered, it is assumed that the RPM and the weapon are at the same height, and
that r = 2 m (Ref. [4]) is the minimum distance between the weapon (which is
located in the middle of the vehicle widthwise) and the RPM as the container
passes through the RPM (see Figure 1b in the main text). The cumulative emis-
sions W at the RPM are calculated by integrating over time, from time 0, which
corresponds to when the front of the 40-ft container passes by the RPM, to time
td = L

v1
, which is when the back of the container passes by the RPM. Without

loss of generality for the drive-through calculation, the weapon is assumed to
be in the middle of the vehicle lengthwise (this is not assumed for the in-place
calculations in Designs 2 and 3), so that the weapon is at a distance r = 2 m
from the RPM at time t = L

2v1
, and more generally the distance between the

weapon and the RPM at time t is
√

r2 + (v1t − L
2 )2. Hence, if the neutron source

of the weapon is S, which is allowed to vary in the computational study, then
the cumulative emissions W at the detector due to the weapon passing through
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the RPM is

W = AεS
4π

∫ td

0

dt

r2 +
(
v1t − L

2

)2
=

tan−1
(

L
2r

)
AεS

2πv1r
. (6)

The authors assume Y is a Poisson random variable with parameter Aεbtd + W,
where again b is a log-normal random variable.

If n̄ denotes the neutron threshold level above which an alarm is generated,
then the detection probability and the false positive probability are given by,
respectively,

d(S) = P(Y > n̄), (7)

f = P(X > n̄), (8)

where the dependence of the detection probability on the source term is made
explicit. The detection limit is defined by

D(n̄) = {S|d(S) = 0.95}. (9)

B.2 Designs 2 and 3
RPM placement. Designs 2 and 3 are described using the same framework.

More notation is needed than in describing Design 1 because now there is a set
of RPMs that simultaneously monitor a container, and containers may stop at
a set of RPMs. There are N RPMs in total, which are collected into sets of n
RPMs. The n RPMs within a set simultaneously monitor a container, the RPMs
within a set are positioned so that they each monitor an interval (measured
along the length of the container) of length L

n , and each is located at the center
of its interval. For example, RPMs are placed at 10 and 30 ft if n = 2, and at 5,
15, 25, and 35 ft if n = 4 (see Figure 1b in the main text). More generally, if x = 0
correspond to the front of the container and x = L corresponds to the back of

the container, then RPM j in a set is located at ( j− 1
2 )L

n for j = 1, . . . , n. Because
each RPM takes up approximately 6 ft along the length of the container, the
value of n is assumed to be no more than 6. Each set of n RPMs is located at
a particular position in queue, where i = 1 denotes the set of RPMs closest to
the front gate (there are m = 4 sets for i = 1, one for each of the 4 lanes), and
i = 2, . . . , N

n − m+ 1 are the sets in the aggregated queue; note that there is a
position in queue behind i = 1 that is not indexed because there are no RPMs
there. The two decision variables, N and n, are chosen so that the number of
sets, N

n − m, is a nonnegative integer.

RPM testing times. Let td
ij and tp

ij be the drive-through time and the in-
place time for RPM j in set i, which are random because they depend on the
realization of the steady-state queue length Q, which represents the number
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of trucks in the system when a new truck arrives, not including the new one.
These testing times are now specified for Designs 2 and 3. Design 2 has only a
single set of RPMs (i.e., N = n) that is located at position i = 2 at the head of the
aggregated queue. Design 2 is fit into this notational framework by setting td

ij =
tp
ij = 0 for i �= 2. If Q ≤ lm− 1 = 7, which occurs with probability

∑7
i=0 p(1 − p)i,

then an arriving truck passes through the RPM at 10 mph, as in Design 1, in
which case td

2 j = 2.73 s and tp
2 j = 0. In the present model, if a truck stays in

place at a set of RPMs for any positive amount of time, then it is assumed that
the drive-through velocity (i.e., the velocity before and after he stops) is only
v2 = 5 mph, which leads to a drive-through time of 5.46 s. Hence, if Q ≥ lm = 8
in Design 2, then an arriving truck has drive-through time td

2 j = 5.46 s and in-

place time td
2 j = µ−1

m = 15 because a truck at the head of the aggregated queue
leaves this position after 1 of the 4 trucks completes its service at the front gate
(while this amount of time is actually random, t2 j is assumed to be a constant
that equals the mean of this random variable).

Turning to Design 3, there are three cases to consider. If Q ≤ lm− 1 then
the arriving truck does not stop in the aggregated queue, and for j = 1, . . . , n,
the testing times are td

1 j = 5.46 s, tp
1 j = µ−1 = 60 s, and td

ij = 2.73 s and tp
ij = 0

for i = 2, . . . , N
n − m+ 1. If Q ∈ [lm, (l − 1)m+ N

n ), then the arriving truck stops
at sets i = 2, . . . , Q − lm+ 2 but does not stop at sets i = Q − lm+ 3, . . . , N

n −
m+ 1. Hence, if Q ∈ [lm, (l − 1)m+ N

n ), then for j = 1, . . . , n, the testing times

are td
1 j = 5.46 s and tp

1 j = µ−1 = 60 s, td
ij = 5.46 s and tp

ij = µ−1

m = 15 s for i =
2, . . . , Q − lm+ 2, and td

ij = 2.73 s and tp
ij = 0 for i = Q − lm+ 3, . . . , N

n − m+ 1.
Finally, if Q ≥ (l − 1)m+ N

n , then the arriving truck will initially stop in the
part of the aggregated queue where there are no RPMs, and will subsequently
slowly move through each set of RPMs, so that for j = 1, . . . , n, the testing times
are td

1 j = 5.46 s and tp
1 j = µ−1 = 60 s, and td

ij = 5.46 sec and tp
ij = µ−1

m = 15 s for
i = 2, . . . , N

n − m+ 1.

Neutrons detected by a RPM. In Designs 2 and 3, RPMs now detect neu-
trons not only while a truck drives through a RPM, but also while a truck stops
at a RPM. Let Xij denote the number of neutrons detected by RPM j in set
i from testing a weapon-free container; note that although there are 4 sets of
RPMs at position 1, any given container only passes through one of these sets. It
is assumed that Xij is a Poisson random variable with parameter Aεb(td

ij + tp
ij).

While b is still a log-normal random variable, it is assumed that the same
realization of b is used for any given container, because the background rate
varies on a longer time scale than the amount of time that a container spends
in the queueing system (i.e., the background rate is random but fixed during a
container’s residence in the system).

The amount of emissions detected from the weapon by RPM j in set i in-

cludes not only the drive-through term, which is now tan−1( L
2r )AεS

2πvijr
, where vij is
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either 5 mph or 10 mph, according to all the cases above (i.e., vij = 10 mph when
td
ij = 2.73 s and vij = 5 mph when td

ij = 5.46 s), but also an in-place term. The

in-place term is
AεStp

ij

4πd2
i j

,3 where dij , which is the distance between the weapon

and RPM j in set i, is specified in the next paragraph. Hence, the cumu-
lative neutron emissions detected by RPM j in set i due to the weapon is

Wij = tan−1 l( L
2r )AεS

2πvijr
+ AεStp

ij

4πd2
i j

, and the number of neutrons detected by RPM j in

set i from testing a weaponized container is a Poisson random variable Yij with
parameter Aεb(td

ij + tp
ij) + Wij .

Weapon location. If the weapon is placed at position x along the length of
the container (where x = 0 and x = L represent the front and back of the con-
tainer), then recalling the placement of RPMs with a set, the authors have that

the distance between the weapon and RPM j in set i is dij =
√

r2 + (x − ( j− 1
2 )L

n )2.
Designs 2 and 3 are optimized under the assumption that the weapon location
x is uniformly distributed over [0, L]. To assess robustness, the detection limits
for the optimal versions of these designs are also computed for the base-case and
worst-case weapon locations. In the best case, the weapon is located at x = L

2n,
which minimizes the distance di1 between the weapon and the first RPM in
the set (by symmetry, any RPM in the set could be chosen), with this distance
being r. Similarly, in the worst case, the weapon is located at x = 0, which max-
imizes the distance between the weapon and the first RPM in the set, leading

to di1 =
√

r2 + ( L
2n)2.

RPM threshold levels. The queue length upon arrival, and hence the test-
ing time, is random but observable during the testing process in Designs 2
and 3, and so a different threshold level n̄ can be chosen for each possible value
of the queue length Q. Let n̄k be the threshold value when Q = k.

Although there are a variety of ways to decide whether the realizations of
Xij and Yij set off an alarm, because the weapon is stationary throughout the
testing process, for each position j = 1, . . . , n the emissions are summed over
all sets i, and then the maximum emissions from any position is considered.
That is, when Q = k, the detection probability and false positive probability are
equal to

dk(S) = P

(
max

j=1,...,n

N
n −m+1∑

i=1

Yij > n̄k

)
, (10)

fk = P

(
max

j=1,...,n

N
n −m+1∑

i=1

Xij > n̄k

)
. (11)
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The detection limit when Q = k is

Dk = {S|dk(S) = 0.95}. (12)

The mean detection limit and the overall false positive probability are computed
by taking expectations with respect to the queue length Q defined in Equation 2.
That is, the mean detection limit is

D =
∞∑

k=0

p(1 − p)kDk, (13)

and the overall false positive probability is

f =
∞∑

k=0

p(1 − p)k fk. (14)

C Costs
To calculate the testing costs, it is assumed that the only VACIS scans that

are analyzed are those that fail passive testing, plus an additional fraction
u = 0.05 of untrusted containers that are flagged by the ATS,5 which more
accurately captures how this testing system might be used by U.S. Customs
and Border Protection. By Equation 33 in the Appendix of Ref. [6], the arrival
rate to the VACIS scan analysts is

λo = λ[1 − (1 − u)(1 − f )], (15)

where the false positive probability f is given by Equation 8 for Design 1 and
Equation 14 for Designs 2 and 3. It is assumed that the VACIS test correctly
diagnoses the false positives or the untrusted containers with probability pv =
0.95, and that a fraction 1 − pv of the containers undergoing scan analysis need
to undergo further testing offsite.

The expected total annual cost has two components, the annualized cost of
each portal monitor, and the cost of offsite testing. As described in the main
text, the annual cost per RPM is cp = $20, 0002,6 and the mean offsite testing
cost per container that undergoes scan analysis is

co = (1 − pv)[cx + (1 − px)cm], (16)

which is $50 in the base case, where px = 0.5 is the probability of diagnosis by
high-energy x-ray, cx = $250 is the cost of an offsite high-energy x-ray test, and
cm = $1, 500 is the cost of an offsite manual test. Let nk be the number of RPMs
used in Design k = 1,. . . ,3, so that n1 = 1, n2 = n and n3 = N. Because λo in
Equation 15 is in terms of tests per minute, the expected total annual cost is

C = cpnk + 525, 600coλo. (17)
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D Detection Limit vs. Cost Curves
Each design is characterized by its mean detection limit versus cost curve.

For Design 1, the testing time is a constant and a detection limit versus cost
curve can be generated by varying n̄. The curves for Designs 2 and 3 require the
solution of some optimization problems. For each value of the cost, the values
of n and n̄k for Design 2, or the values of N, n, and n̄k for Design 3 are chosen, to
minimize the mean detection limit D in Equation 13 subject to a cost constraint
using Equation 17.

However, additional restrictions on n̄k in Design 3 are imposed to ease the
computational burden. Note that for given values of N and n, there is a one-
to-one correspondence between fk and n̄k via Equation 11 (i.e., each value of
n̄k generates a corresponding unique value for fk) for each value of k. Hence,
constraints on fk are imposed that lead to corresponding constraints on n̄k. In
Design 3, a truck is in-place at one set of RPMs if Q ≤ lm− 1 and is in-place at
all sets of RPMs if Q ≥ (l − 1)m+ N

n − 1. Hence, it is assumed without loss of
optimality that fk = f if k ≤ lm− 1 and fk = f̄ if k ≥ (l − 1)m+ N

n − 1, where f
and f̄ are parameters to be optimized. The additional constraints require that
fk be a linear interpolation of f and f̄ for intermediate values of k:

fk = f + k − lm+ 1
(l − 1)m+ N

n − lm
( f̄ − f ) i f k ∈

[
lm, (l − 1)m+ N

n
− 2

]
. (18)

For each value of N and n in Design 3, the constraints in Equation 18 allow for
optimization over two parameters, f and f̄ , rather than over the thresholds
n̄k, k = 0, 1, . . ..

Solving these optimization problems for various cost values gives the de-
tection limit versus cost curves in Figure 2 of the main text.
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