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ABSTRACT
This article presents a novel application of an inspection game to
find optimally efficient nuclear safeguard strategies. It describes
a methodology that allocates resources at and across nuclear
fuel cycle facilities for a cost-constrained inspectorate seeking to
detect a state-facilitated diversion or misuse. The methodology
couples a simultaneous-play game theoretic solver with a proba-
bilistic model for simulating state violation scenarios at a gas cen-
trifuge enrichment plant. The simulationmodel features a suite of
defender options based on current International Atomic Energy
Agency practices and an analogous menu of attacker prolifer-
ation pathway options. The simulation informs the game theo-
retic solver by calculating the detection probability for a given
inspector-proliferator strategy pair. To generate a scenario payoff,
it weights the detection probability by the quantity and quality of
material obtained. Using a modified fictitious play algorithm, the
game iteratively calls the simulationmodel until Nash equilibrium
is reached and outputs the optimal inspection and proliferation
strategies. The value the attacker places onmaterial quantity and
quality is varied to generate results representative of states with
different capabilities and goals. Sample model results are shown
to illustrate the sensitivity of defender and attacker strategy to
attacker characteristics.

Introduction

Concern over nuclear proliferation has elevated in concert with increased global
interest in civilian nuclear power and the spread of commercial fuel cycle technolo-
gies. This confluence of factors has placed heavy demands on International Atomic
Energy Agency (IAEA) Department of Safeguards, the organization tasked with
verification of peaceful nuclear activities. Traditionally IAEA safeguards have been
applied in a prescriptive manner according to an established set of guidelines. Safe-
guards implementation has been largely transparent to the states except for random
on-site inspections. The regime thus places high demand on physical inspections,
which are costly and manpower-intensive.
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Budget constraints have spurred efforts to increase IAEA efficiency through the
development of tools to aid in resource allocation decision-making.Many such tools
focus on diversion pathway analysis and are based on probabilistic techniques.1
While probabilistic techniques are valuable for describing fundamentally random
events, like natural disasters, their application to adversarial problems has come
under scrutiny. Common criticisms include the fact that data are too scarce formany
security problems to adequately characterize the threat or consequences of an attack,
and the notion that probabilistic techniques may not fully capture the behavior of
intentional actors like a malevolent state or terrorist.2 Intentional actors represent a
special class of threat, because they possess the ability to observe defenses and adjust
their actions accordingly.3 Cox voices this skepticism in his work, criticizing espe-
cially the use of chance nodes in fault tree analysis to model adversary decisions by
arguing that these decisions are chosen based on adversary judgment, not governed
by chance. Cox and others suggest that a game theoretic approach to intelligent risk
analysis may be more appropriate. In light of this perceived weakness in the existing
body of work, this article presents a game theoretic methodology to explore opti-
mal IAEA resource allocation strategies for detecting illegal state behavior at a safe-
guarded gas centrifuge enrichment plan (GCEP).

Previous work

Examples abound of the use of probabilistic simulation techniques for diversion
pathway analysis. One example is the Integrated Safeguards System Analysis Tool
(LISSAT) developed at Lawrence Livermore National Laboratory. It is continuous-
time model for evaluating safeguards system effectiveness at fuel cycle facilities that
uses a digraph fault tree structure to examine possible points for safeguards sys-
tem failure given different diversion events.4 Another example is a Markov-model
based proliferation assessment tool developed at Brookhaven National Laboratory.5
The model features both intrinsic and extrinsic barriers to proliferation, including
a suite of IAEA safeguards options. It evaluates metrics of interest, including mini-
mum time to and cost of proliferation, the detection probability, and technical dif-
ficulty of the diversion pathway.

These and other methods examine vulnerable proliferation pathways at a single
facility. Additional work characterizes proliferation resistance across multiple facil-
ities in a fuel cycle system. A Proliferation Resistance & Physical Protection (PR
& PP) evaluation methodology, developed by an expert group of the Generation IV
International Forum,6 focuses on evaluating the proliferation resistance of a nuclear
energy system as a whole relative to other nuclear energy systems. The outcome is
evaluated using amulti-attribute utility analysis, which includes detection probabil-
ity, proliferation time, and “safeguardability.”

These probabilistic tools, while useful for signature development for a diversion
event or to assess relative proliferation resistance of different fuel cycle systems, may
not be well suited for resource allocation decisionmaking. They rely heavily on user
input for the diversion scenarios modeling, and thus the scenarios are constrained
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to those imagined by the analysts. More important, these techniques fail to capture
the intelligent and adaptive nature of the adversary, namely his ability to observe
static or transparent defenses and change his strategy accordingly.

Game theory is a popular technique for modeling adversarial situations because
of its ability to emulate rational human cognition and behavior, and as such, it
has historically been applied to safeguards and inspection situations.7 For example,
Avenhaus presents a game theoretic treatment of data andmaterial accountancy ver-
ification at nuclear facilities.8 An analysis of attribute sampling acrossmultiple strata
is considered, and the mathematical formulation for optimal inspector strategy is
given. This formulation is the foundation for the current IAEA attribute-sampling
paradigm. Defensive resource allocation across multiple facilities is examined, and
optimal inspector and inspectee strategies are given for a scenario with a small num-
ber of facilities.

Kilgour and Avenhaus use game theory and decision theory to examine the
cost-effectiveness of IAEA inspections and recommend strategies to improve effi-
ciency.9 The work establishes that a state’s motivation to violate depends on political
parameters—namely, the penalty the state perceives for detected illegal behavior and
the reward the state perceives for undetected illegal behavior—as well as a technical
parameter, inspection effectiveness.

This previous work is largely theoretical in nature, presenting the mathemati-
cal formulation for strategies and detection probabilities. The objectives of the past
work generally did not require that individual safeguards be depicted at a realistic
level of detail. Furthermore, the complex nature of the game formulation has led
others to limit its scope to allow for the calculation of Nash equilibrium.10

In an application of the game theoretic approach to a specific proliferation strat-
egy, Brown et al. present a more applied two-stage, max–min Stackelberg game rep-
resenting an interdictor trying to maximally delay a proliferator, who is trying to
produce a first batch of fissile material.11 The model assumes that the proliferator
observes the interdictor’s defense strategy and adjusts his strategy accordingly. The
incorporation of a detailed project management sub-model, which is coupled with
the gamemodel for optimization, allows the diversion scenario to be described using
a parametric model. The simulation tool in this work extends Brown’s approach
of using a sub-model to generate outcomes for each interdictor/ proliferator
strategy.

An alternative approach to modeling intelligent adversary behavior is Agent-
Based Modeling (ABM), which seeks to explain and predict group dynamics by
modeling individual behavior and interactions. The Bayesian Agent Based Mod-
eling (BANE) tool has been developed to model the interaction between defensive
and offensive nonproliferation agents and explore the interplay between demand-
side and supply-side factors that may influence a state’s propensity to pursue nuclear
weapons.12 While this model nicely captures the adaptive nature of both agents, it
takes a broader, network-level view, as opposed to the more detailed, facility-level
approach presented here.
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Gamemodel

In this work, the game is modeled as a two-person zero-sum (TPZS) simultane-
ous play (Cournot) game. A TPZSG is used to model the interaction between two
players with diametrically opposing goals—in this case, the attacker seeks to min-
imize the payoff and the defender seeks to maximize the payoff. While a TPZSG
is an imperfect model for the complex interaction between a state contemplating
illegal behavior and an international inspectorate, it is employed here because of its
simplicity and flexibility. A TPZSG is solvable with limited mathematical and/ or
computational expense, which allows for additional richness and complexity to be
built into the simulation model. In addition, the use of a TPZSG represents a con-
servative assumption, because it provides for the defender selecting a strategy in the
worst-case scenario, that is, against the attacker’s most dangerous strategy.

In a simultaneous play game, both players have full knowledge of the strategy
options available to the other player, but each player must commit to his strategy
before observing to what strategy the other player commits. The assumption of per-
fect knowledge represents a modeling idealization and simplification; in reality, it is
unlikely (and undesirable) that an adversary would have perfect knowledge of the
options available to the defender and his chance of defeating each defender strategy.
Yet this assumption is more realistic for insider adversaries, like a proliferant state,
than for outsiders, given insiders’ knowledge of security measures and operational
procedures. As with the TPZSG, this assumption is generally a conservative one,
as it finds the optimal defender strategies against a more informed and thus more
capable adversary.

The game is solved using the fictitious play (FP) algorithm. Fictitious play is
a myopic learning algorithm first introduced by Brown for finding the value of a
TPZSG.13 Fictitious play is an alternative to the standard Simplex method and can
be advantageous for large linear systems.14 FP was employed in this work because
unlike the Simplex algorithm, it eliminates the requirement to pre-populate the pay-
off matrix, which dramatically reduces the number of simulation calls needed to
solve the game. In the FP process, each player assumes her opponent is playing a sta-
tionary strategy, and the two players engage in an iterative finite game. In each round
a player chooses her myopic best response to the distribution of strategies played by
her opponent up to that point; that is, she selects the response that will maximize her
expected payoff in the next round of play. Julia Robinson showed that all TPZSGs
converge to the Nash equilibrium value as the number of iterations approach infin-
ity.15

Figure 1 depicts a flowchart of the game model and its interaction with the sim-
ulator. Defender and attacker strategies are indexed by i and j, respectively, where
i ∈ [0, I] and j ∈ [0, J] . Pure attacker and defender strategies16 are denoted by yj
and xi, respectively. The payoff for defender strategy xi and attacker strategy yj is
vij. x is an I-element vector that holds the defender’s mixed strategy history; the ith
element of x is incremented when the defender plays pure strategy xi, and the val-
ues in the vector are re-normalized such that the I elements in x sum to 1. y is the
analogous attacker mixed strategy history.
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Figure . Flowchart of model logic.

The FP algorithm is initiated by the attacker randomly choosing and playing pure
strategy, yj(0) (“Start FP loop” box in Figure 2). The simulator is called and calculates
the payoffs vij for all defender strategies xi, given the attacker’s strategy y, and these
values are stored in the payoffmatrix. Knowing the payoffs for all defender strategies
that can be played in response to yj(0), the defender then chooses the pure strategy
response, xi(1), that will maximize her payoff in the next round. After selecting the
best response, the cost of the strategy is checked to see if the strategy is under bud-
get. If so, the strategy is played and the defender’s mixed strategy is updated. If not,
the defender picks her next best pure strategy response. The defender continues to
pick her next best pure strategy response until she chooses one that she can afford.
Once she selects and plays her best strategy response xi(1), a variable vup is initialized
and set equal to the value of vij(1,0). The simulator is then called again and calculates
payoffs vij for all attacker strategies yj in response to the defender’s best pure strategy
xi(1). The attacker chooses his best pure strategy response, yj(1), given the defender’s
current strategy history, x.The variable vlow is set equal to the payoff value vij(1,1). The
attacker plays his pure strategy best response yj(1) and his mixed strategy is updated
accordingly. This constitutes one fictitious play loop, and convergence is checked.
The model is said to have converged when the convergence criterion (vup-vlow)/vup
< ε is met. For the results presented in this article, ε = 0.001. At convergence, the
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Figure . Simulation logic.

mixed strategies x and y are the equilibriumdefender and attacker strategies, respec-
tively, and vup = vlow = v, the equilibrium value of the game. If convergence is not
yet achieved, control is returned to the FP loop.

Simulationmodel logic

Figure 2 details the logic flow for the simulation model. When calling the simula-
tion, the game passes all defender and attacker strategy information needed to define
a strategy pair or scenario. The simulation uses these inputs to create schedules of
defender and attacker events for the course of the simulation period. The length of
the simulation period is determined by the attacker strategy. Day 1 of the simulation
is the defined as the day the attacker begins his malevolence. The attacker chooses
the duration of the attack (unless the attack is a single event, in which case it pro-
ceeds for only one day). The simulation period extends after the end of the attack
to provide the defender time to detect missing material and place the facility in an
“alert state.”17 For the results presented here, the post-diversion detection time was
set to thirty days to correspond to the IAEA timeliness goals for the detection of a
significant quantity of unirradiated highly enriched uranium (HEU).18
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Table . Annual Throughput for , Kg-SWU GCEP.

Material Mass UF (kgU)
Annual cylinder
throughput

Number of cylinders
assumed in storage at any

given time

Feed    
Product    
Tails    —

Calculated directly; calculations validated against enrichment calculator at uxc.com.

A simulation day begins with a loop through all deployed safeguards, k, to ascer-
tain whether each is active on day t = 1. Herek ∈ [0,K] indexes across all safe-
guards. Once each active safeguards measure is identified, a check is conducted to
see if that measure is effective against the active attacker strategy. If the safeguards
measure k is effective against attacker strategy yj, the daily detection probability for
the pair, DPk,j,t, is calculated. The algorithms used to calculate DP depend on the
safeguard-attacker option pair; they are summarized in theGCEP SimulationModel
section of this article, and detailed descriptions are available in Appendix B and ref-
erence.19 After the payoffs for all active safeguards on a given day have been calcu-
lated, this process is repeated every subsequent day until the simulation time has
been exhausted. The cumulative payoff for each safeguards measure over the simu-
lation period, DPcum,k, is calculated by taking the multiplicative sum across all the
days t ∈ [0,Tend] , as shown in Figure 2. An overall scenario DP, DPi,j, is calculated
by combining the individual safeguards measure DPs, and the scenario payoff, vi,j,
is calculated using a payoff function, P, to weight the scenario DP by value of the
material in the scenario. Finally, the scenario payoff value itself is returned to the
game.

A gas-centrifuge enrichment plant (GCEP) with an annual capacity of
465,000 kg-SWU is modeled. A GCEP was selected for this case study because of its
perceived proliferation risk20 and the resources the IAEA has historically dedicated
to safeguarding this type of facility.21 The facility was chosen to represent a plant that
might be present in a nation with a burgeoning indigenous fuel cycle. The plant uses
natural uranium feed with uranium-235 enrichment of 0.711% and enriches prod-
uct to 4.5% uranium-235, producing tails with 0.22% enrichment. Annual material
throughput under normal operating conditions is shown in Table 1. The third col-
umn of Table 1 gives the number of each type of cylinder assumed to be in storage
at any given time. It is assumed that approximately 84 days’ worth of feed is kept on
site at all times and that the operator is required to hold all product cylinders for a
period of 28 days (at least one inspection cycle).22

The defender and attacker options used in the GCEP simulation model are dis-
played in Table 2 and summarized below. Shaded cells indicate that the safeguards
measure is effective against the corresponding attacker option. The attacker options
and defender options and algorithms used to calculate the detection probability for
each defender-attacker strategy pair are described in detail in Appendix A and B,
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Table . Defender-Attacker Strategy Pair Summary Table for Enrichment Facility. X Indicates Defender
Option is Effective Against Attacker Option.

Attacker Options

Defender Options      

A X X X X
B X
C X X
D X X
E X X
F X X
G X X
H X X X X
I X X

respectively. It should be noted that the facility and inputs used to calculate detec-
tion probabilities are notional, albeit representative. An effort was made to accu-
rately capture the relative effect of different defender and attacker parameters on DP
(i.e., stealing larger quantities of material is more likely to be detected than steal-
ing smaller quantities of material); however, the values are intended to allow for
comparison of options and are meaningful only in a relative sense. When all possi-
ble permutations of the different options and sub-options available to the players are
enumerated, theGCEP simulationmodel defines a total of 246,645 defender options
and 321 attacker options.

The defender and attacker strategies presented in this article are single prolifera-
tion actions at a single facility; however, the strength of the game theoretic method
is that it is extensible to system-level modeling and analysis. Though not presented
here, thismodel has demonstrated capabilitymodelingmulti-facility systems, allow-
ing the attacker to choose his point of attack and consequently forcing the defender
to allocate resources across multiple facilities. As such, it could be used to model
complete state-level diversion or acquisition pathways, including threats fromunde-
clared facilities. The costs anddetectionmethods for undeclared facilities differ from
those of declared facilities, but they could in principle be incorporated into the
model by simply integrating the appropriate simulation inputs. Listner and Canty
offer four possibilities for modeling detection probabilities at undeclared facilities,
including a Bayes and frequentist approach that could be incorporated into the sim-
ulation model.23

Attacker options

The attacker has six attack categories from which to choose, representing three
major types of attack: diversion of declared product, misuse of the facility to enrich
above declared levels, and production of undeclared product from undeclared feed.
An attacker strategy is comprised of only one attacker option and its defined param-
eters, which the attacker selects from a set of discrete options.



SCIENCE & GLOBAL SECURITY 11

Table . Attacker Options and Associated Parameters.

Attacker option
Tunable parameters [allowable

values] Description

. Diversion of cylinder (cyltheft) Number of cylinders [, , ] Area
[feed, storage]

Attacker diverts cylinder(s) from feed or
product storage in one-time attack.

. Diversion of some material
from cylinder (matcyl)

Frequency [, ,  days-] Durations
[, ,  days] Total mass [, ,
 kg] Number of cylinders [, , ]

Attacker diverts material from cylinder(s)
in product storage in a continuous attack.

. Diversion of material from
cascade (matcasc)

Frequency [, ,  days-] Durations
[, ,  days] Mass removed per
cascade [., . kg] Number of
cascades [, , ]

Attacker diverts some material at product
enrichment from cascade(s) in a
continuous attack.

. Re-piping cascade (repiping) Durations [, ,  days] Fraction
cascades dedicated [., ., .]
Product enrichment [., .,
.]

Attacker re-pipes the cascades in a
one-time attack and then continues to
produce material with the illegal cascade
configuration daily to produce material
enriched above declared values.

. Recycling material through
cascade (recycle)

Frequency [, ,  days-] Durations
[, ,  days] Number of cascades
[, , ] Product enrichment [.,
., .]

Attacker recycles material through the
cascade to produce material enriched
above declared values.

. Undeclared feed (udfeed) Frequency [, ,  days-] Durations
[, ,  days] Number of cascades
[, , ]

Attacker feeds undeclared material
through the cascade to produce
undeclared feed at product enrichment.

Table 3 lists each attacker option, the relevant parameters, and a brief description.
The parenthetical label after the attack option is the label used to refer to the option
in model results.

Defender options

Table 4 enumerates each defender option and relevant tunable parameters. As with
the attacker options, the parenthetical label appearing after the name of the defender
option gives the label used to refer to the option in model output; these labels are
used in the Results section. A defender strategy is comprised of any number of active
safeguards measures, depending on how many safeguarding options the defender
elects to purchase. Detailed descriptions of each safeguards measure are given in
Appendix B.

Exogenous detection probabilities

In addition to the safeguards listed above, cost-free, exogenous sources of detec-
tion capability are incorporated into themodel using a backgroundDP. Background
DP serves as a proxy for all other safeguards measures and sources of detection not
explicitly considered, including the increased detection capability that intelligence
and open source information offer, generally at no cost to the inspector. The back-
ground DP is a daily probability and is attacker strategy-specific. This implementa-
tion is intended to represent the reality that intelligence and open source informa-
tion is better suited to detect certain diversion/misuse scenarios.
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Table . Defender Options and Tunable Parameters.

Defender option
Tunable parameters [allowable

values] Description

A. Inspection (inspection)∗ Frequency [,  days-] Team size
[small, large] False Alarm Probability
(FAP) [., .]

A basic inspection is comprised of physical
inventory of cylinders in storage, mass
balance verification, and review of logged
video surveillance images.

B. Passive seal verification
(pseals)†

Frequency [,  days-] Fraction
seals verified [., ]

Checking integrity of passive seals to
determine if tampering occurred.

C. Non-Destructive Assay (nda)† Frequency [,  days-] FAP [.,
.]

Gamma spectroscopy to determine
enrichment of material.

D. Destructive Assay (da)† Frequency [,  days-] Number of
samples [, ]

Take samples and send to lab for highly
accurate but time consuming analysis to
determine isotopics.

E. Review of transmitted video
images

Team size [small, large] Video is remotely transmitted and
automatically reviewed for anomaly
detection.

F. Active seal verification (aseals) Fraction cascades sealed [., ] Application of active seals to
automatically alert if tampering occurs.

G. Continuous Enrichment
Monitoring (cemo)

FAP [., .] Count time [,
 s]

Continuous, online, go-no go enrichment
monitoring to detect material in cascade
with enrichment above %.

H. Visual Inspection (DIV)†† Frequency [,  days-] Visual inspection of cascade hall for
anomalies (i.e., suspiciously placed
cylinders or re-piping).

I. Environmental Sampling (ES)†† Frequency [,  days-] Number of
samples [, ]

Swipes taken in cascade hall and sent to
lab for destructive analysis to provide
isotopic information.

∗Basic inspection; †“Add-on”—can be added to basic inspection up to as frequently as basic inspection occurs;
††Cascade hall inspection—grants inspector access to cascade hall.

Safeguards costs

A method was formulated to allocate relative costs to each safeguards measure.
These costs are estimates based on available information about the necessary tech-
nology or manpower needs. The cost values used in the model, referred to as “sim-
ulation dollars” (s$), are the based upon the estimated real values of selected safe-
guards divided by 100. For example, a piece of equipment that costs $1000 costs 10
simulation dollars. This paradigm is used for convenience and to emphasize that the
costs here retain meaning in a relative sense, but are not claimed to be faithful to the
actual absolute costs.

The cost associated with each safeguards measure has two components: capital
and operations and maintenance (O&M). Capital costs are amortized over the ser-
viceable lifetime of the equipment. These are one-time costs incurred for large pieces
of equipment, such as amass spectrometer. O&M costs fall into two categories: fixed
and variable. Fixed O&M costs are associated with the upkeep of the equipment and
are incurred whether the equipment is used regularly or not. Variable O&M costs
are costs that the defender pays when he uses the service, such as analyzing a sam-
ple, assessing surveillance feed, or inspecting a facility. The per-item cost of certain
safeguards is also considered a variable O&M cost, such as the cost of a seal. The
total cost for a safeguards measure is the sum of the annual equipment, fixed, and
variable O&M costs.
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Table . Enrichment Safeguards Cost Summary.

Safeguards
measure

Capital cost
(s$/year)

Fixed O&M
(s$/year) Variable O&M (s$/year)

Total fixed cost
(s$/year)

Manpower Other
Insp- Inventory   /insp  
Insp- Mass balance  .   .
Insp- Video logged . .   .
Passive seals   /insp ./seal 

./batch
NDA . . /insp  .
DA . . /insp  .

./batch
Video transmitted . . ./day  .
Active seals   ./day ./seal 
CEMO  . ./day  .
Visual inspection   /insp  
ES . . /insp  .

/batch

Table 5 shows the costs associated with each safeguards measure. A detailed
description of the assumptions used to arrive at these values is given in Appendix
C. The total costs for all of the possible defender strategies in the model range from
0-5900 s$.

Payoffs

The payoff to the defender and attacker for a given strategy pair is the detection
probability weighted by the quantity and attractiveness of thematerial obtained. The
material attractiveness is valued using Bathke’s Figure of Merit (FOM) method24
for an advanced proliferant state or a sub-national group unconcerned with yield.
The FOMs for all material available to the attacker in the enrichment simulation
are given below in Table 6. For a detailed description of how the FOM values were
calculated, please see the reference from note 18. A FOM value for natural and 4.5%
enriched uranium could not be calculated because these materials have an infinite
bare sphere critical mass; however, values were assigned to characterize the attrac-
tiveness of these materials relative to the other enriched uranium products.

The FOM value is combined with the material quantity Q [kg] and DP using the
payoff function, P, given in Equation 1. Here α is a weighting factor that describes

Table . FOM Values for Enrichment Facility.

Enrichment FOM

.% .

.% .
.% .
% .
% .

A FOM-like value of . was assigned to .% enriched material, and the value of
. for natural uranium was assigned one-third of that value based on the fact
that enriching  kg of natural uranium to % requires approximately three
times the enrichment capacity as enriching .% enriched material to %.
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the degree to which the attacker is motivated by high-value material, or the “mate-
rial premium” parameter. The e parameter ensures that the payoff becomes very
large, but not infinite, for DP = 1 scenarios and is assigned the value of 0.001. The
payoff function becomes asymptotically large as the DP approaches unity, which
is undesirable to the attacker, who seeks to minimize the payoff. Thus despite the
attacker’s incentive to obtain high-value material, he will reject any strategy that
results in certain detection, if alternatives are available. The payoff takes the maxi-
mum value of 1.0 in a breakout scenario, meaning two conditions are met: (1) the
attacker obtains the best possible material, and (2) the scenario DP is one. The nota-
tion

(
FOMy′ · Qy′

)
indicates the maximum possible material utility for the attacker.

The payoff is normalized by the maximum possible material value available to the
attacker to eliminate an artificial drop in payoff value as alpha increases.

P = DP
(FOM · Q)α

· 1
(1 + e − DP)

· e · (FOMy′ · Qy′ )α (1)

Samplemodel results

Three illustrative results are presented here to demonstrate some of the model’s
capabilities: defender and attacker strategy sensitivity to attacker characteristics, the
efficient frontier, and defender strategy sensitivity to exogenous detection. The first
result shows the sensitivity of defender and attacker strategy to the premium the
attacker places on material value. In order to perform this analysis, the alpha value
shown in Equation 1 was varied from 0 to 0.8, and the equilibrium strategies were
calculated. Note that α = 0 is not a realistic scenario, because it ascribes equal utility
to all materials and amounts from natural uranium to HEU; however, α = 0 serves
as the limiting case of an extremely conservative attacker. Alpha values were varied
only up to 0.8 because at this value the attacker has already committed to a single
attack strategy that is dominated by his desire for high-value material.

Figure 3 and Figure 4 show attacker and defender strategy, respectively, as a func-
tion of alpha for a budget level of B= 200. The numbers assigned to each strategy are

Figure . Attacker strategy as a function of alpha (B= ).
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Figure . Defender strategy as a function of alpha (B= ).

unique identifiers of the defender strategies and attacker strategies. The title next to
the number indicates the type of safeguards measure deployed or the type of attack
being perpetrated. The fraction of each pure strategy played is given on the vertical
axis. A pure strategy is comprised of only one attacker or defender option, while
a mixed strategy contains membership from more than one option. It represents a
randomization between the pure strategies of which it consists.

In the low alpha region, both the defender and attacker play mixed equilibrium
strategies. Here material attractiveness and quantity do not strongly affect the pay-
off, so the attacker chooses a relatively low-risk strategy that is difficult to detect but
yields little material value. Specifically the attacker plays amixed strategy of produc-
ing undeclared product from undeclared feed and stealing low-enriched uranium
directly from the cascade. Conceptually the mixed strategy represent a randomiza-
tion of strategy options; for example, at alpha = 0 there is a 70% chance that the
attacker will produce undeclared product and 30% chance that he will steal mate-
rial directly from the cascade. Though it is not immediately evident from the figure,
it can be seen from the strategy descriptions in Table 7 that the strategies played by
the attacker become increasingly brazen as alpha increases and the attacker becomes
more incentivized by material value and quantity. For example, A302 and A300 are
both weeklong attacks wherein the attacker produces undeclared feed, but for strat-
egy A300, the attacker produces undeclared feed only once during the period, and
for strategy A302 the attacker produces undeclared feed daily. At alpha = 0.4 the
attacker is sufficiently motivated by desire for large quantities of material that he

Table . Attacker Strategy Descriptions.

Strategy Parameter  Parameter  Parameter  Parameter 

A- udfeed dur=  days freq=  days- fraction= .
A- matcasc dur=  days freq=  days- fraction= . mass= . g
A- udfeed dur=  days freq=  days- fraction= .
A- matcasc dur=  days freq=  days- fraction= . mass= . g
A- recycle dur=  days freq=  days- fraction= . xp = .
A- udfeed dur=  days freq=  days- fraction= .
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switches to a more aggressive pure strategy of undeclared feed production while
retaining a non-zero evasion probability.

Figure 4 shows that the defender also plays a mixed strategy at low alpha val-
ues and then switches to a pure strategy. At alpha = 0 and alpha = 0.1, the defender
plays amixed strategy featuring both active seals (D90), and an inspectionwithNDA
(D204120). The mixed strategy again represents randomization: the defender plays
D90 27% of the time, meaning about a quarter of the active seals applied at the facil-
ity are real seals that can relay information to a person waiting to assess an alarm,
while the other three-quarters are dummy seals. The attacker can see the seals on the
cascades, but cannot discriminate between real and dummy seals. The defender also
plays the inspection + NDA strategy 73% of the time, meaning the defender ran-
domly conducts only 73% of her permissible inspections. The defender uses active
seals to counter material theft from the cascades, and purchases an inspection to
detect undeclared feed. At high alpha values, on the other hand, the attacker places
greater value on high-quality material and commits to a pure strategy of undeclared
feed production. Then the defender commits to a pure inspection-only strategy, as
purchasing active seals would no longer provide any detection capability.

The alpha sensitivity study is useful for understanding the results of the model
in the context of real proliferation situations. In reality an adversary’s preferences
and capabilities (as expressed by his utility function) are difficult to know with any
certainty, so the alpha sensitivity results can be used tomanage this uncertainty. The
alpha sensitivity study could be used in a variety of ways to inform decision-making:
for example, a distribution could be placed on α to reflect prior beliefs about the
attacker’s utility function or capabilities. Themodel could then be run stochastically
by performing Monte Carlo sampling from the distribution and solving for Nash
equilibrium to develop a portfolio of possible defensive investments.

Fixing the value of α at 0.25, Figure 5 illustrates an “efficient frontier,” the pay-
off as a function of budget. The step increases in payoff at budgets of 500, 1550,
and 2000 s$ correspond to changes in defender strategy. These budgets elevate the

Figure . Payoff as a function of budget.



SCIENCE & GLOBAL SECURITY 17

defender above a cost threshold and allow her to purchase some advantageous sym-
biotic safeguards combination that will result in increased detection capability. For
example, at 1500 s$ the defender is playing a pure strategy that includes monthly
inspections with a large team, NDA, active seals, and monthly cascade hall inspec-
tions (D226086). Once her budget increases to 1550 s$, the inspector is able to afford
a mixed strategy that contains a randomization between all of the elements listed
above and weekly (rather than monthly) cascade hall inspections (strategy: 94% D1
[weekly cascade hall inspections]; 6%D226086). The mixed strategy means that the
defender does not opt to purchase a cascade hall inspection every week, but only on
94% of weeks.25 Inspecting at this frequency is sufficient for her to deter the attacker
from amore damaging strategy that could be carried out if there were no inspection.
Because the attacker is playing a mixed strategy comprised largely of undeclared
product production, the shift of the defender’s strategy to playing primarily weekly
cascade hall inspections increases the inspector’s payoff, as seen in the plot, while
still deterring the attacker from shifting to a different target.

This plot is important because it can serve as a guide for rational decision-making
by providing information about when additional investment provides diminish-
ing returns, as is the case in the plateau regions where additional investment does
not result in increased payoff. The efficient frontier also illustrates when additional
investment should be expected to increase payoff, and at what level additional
resources need to be invested in order to affect the payoff .

As mentioned above, a daily background detection probability can be applied in
the simulation model to serve as a proxy for exogenous detection means not explic-
itlymodeled, including intelligence and open source information, which offers addi-
tional detection to the defender. If provided by a third party, these data streams can
be cost-free or virtually cost-free to the defender. Intelligence has a non-uniform
probability of detecting different types of attacks; thus, the backgroundDP is applied
non-uniformly across the attacker options. To test the sensitivity of the equilibrium
strategies to the backgroundDP, the backgroundDP against undeclared production
was systematically varied from 0.001 to 0.1, and changes in defender strategy were
observed. The backgroundDP for all other strategies was held at zero and alpha was
set to 0.25. This trial was designed to mimic the real-world situation where intel-
ligence collection may be able to detect unusual cylinder traffic into and out of a
facility, as would be necessary for producing undeclared product from undeclared
feed, even with no knowledge of operations inside the facility. Figure 6 shows the
changes in defender strategy as a function of background DP for B = 200.

Even for a daily backgroundDP as low as 0.1%, the defender changes the fraction
of the pure strategies played in the equilibrium mixed strategy. With a daily back-
ground DP of 1%, the defender introduces a small fraction of a new pure strategy to
her equilibriummixed strategy. This change in defender strategy occurs in response
to anticipated changes in attacker strategy. With the introduction of background
DP, the attacker begins to shift away from undeclared production, because this is
the only attacker option to which the background DP applies. When the daily back-
groundDP is as high as 5%, the attacker ceases undeclared production entirely. This



18 R. M. WARD AND E. A. SCHNEIDER

Figure . Defender strategy as a function of background DP for B= .

result has big implications for the selection of inspection strategies at low budgets;
namely that the optimally efficient inspection strategy in the absence of intelligence
information is not necessarily the optimally efficient inspection strategy if intelli-
gence or open source information is available. Thus, a cost-constrained inspector
must consider available reliable exogenous sources of detection in order to employ
an optimally efficient strategy.

Conclusions and future work

This article presents a novel methodology and its computational implementation
for using game theory to allocate safeguards activities at nuclear fuel cycle facilities.
The methodology couples a game theoretic solver with a probabilistic simulation
model of misuse or diversion scenarios at a GCEP. The game calls the simulation
model to generate payoff values for given safeguards and attack strategy pairs, and
the simulation model calculates the payoffs by weighting the detection probability
for the pair by the quantity and quality of material obtained. These payoff values are
returned to the game and used to populate the payoff matrix. The game is solved
using a fictitious play algorithm, and the model outputs the equilibrium defender
and attacker strategies as well as the equilibrium value. The methodology has been
developed to allow users to input facility-specific assumptions and detection prob-
ability algorithms to generate realistic results.

The case study results show that both optimal proliferation and safeguards
strategies are dependent on the attacker’s own valuation of material he could
potentially obtain, and by extension state capabilities, thus lending support to
the necessity for state-specific nonproliferation analyses to drive safeguarding
strategy decisions. Furthermore, though not presented in this article, the model
can also optimize resource allocation across multiple facilities, illustrating, for
instance, the percentage of her total budget the defender should invest in safe-
guarding multiple facilities. These two model capabilities make it a useful tool
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for guiding and supporting the IAEA’s implementation of the State-Level Concept
and information-driven safeguards.26 This tool can provide a systematic basis for
allocating safeguarding resources across multiple facilities for a state with particular
characteristics.

One compelling result generated by the model is the so-called “efficient fron-
tier,” or the visual representation of scenario payoff as a function of budget. The
efficient frontier traces the optimally efficient strategy at any budget, and serves as
a guide to resource investment decision making by conveying information about
the defender’s return on investment for safeguards strategy decisions. While the
results conform to the intuitive notion that increasing the defender’s resource invest-
ment level generally increases the defender’s payoff, they also indicate that there
are certain conditions under which additional defender investment can be waste-
ful. One such condition is if the attacker is willing to breakout; another arises if the
defender invests further resources in areas that the attacker is already deterred from
attacking.

The tool can alsomodel the sensitivity of defender strategies to exogenous sources
of detection probability that are cost-free to the defender, like intelligence, to inform
optimal safeguarding strategies in the presence of such information.

A significant potential application for the model developed in this article is for
marginal cost analysis, particularly in the area of safeguards investment decision-
making. This model could be used to perform cost sensitivity analysis for a new
type of safeguards tool or technique, by determining cost above which the defender
no longer selects it because the detection probability to cost ratio is too low. In a
similar vein, the model could also provide an estimate for the “value” of intelligence
or open source information in a specific threat environment.

Finally, one of the more pressing policy questions surrounding states that may
or may not have proliferant aims is whether the state can be deterred from pro-
liferating, and if so, at what cost. A legal behavior option could easily be imple-
mented in this model to draw a quantitative relationship between attacker charac-
teristics and “deterrence budget,” or the investment level required by the defender
to compel a state into compliant behavior or an open breach. Such an analy-
sis would provide policy makers unique insight into how safeguards investments
do or do not affect the decision made by a state to pursue an illicit weapons
program.
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