Research Note to Hypersonic Boost-Glide Weapons by James M. Acton: Analysis of the Boost Phase of the HTV-2 Hypersonic Glider Tests David Wright *Science and Global Security,* 2015, Volume 23, pp. 220-229

КОММЕНТАРИЙ К СТАТЬЕ ДЖЕЙМСА М. АКТОНА "ГИПЕРЗВУКОВОЕ РАКЕТНОЕ ПЛАНИРУЮЩЕЕ ОРУЖИЕ": АНАЛИЗ РАЗГОННОГО УЧАСТКА ДЛЯ ИСПЫТАНИЙ ГИПЕРЗВУКОВОГО ПЛАНЕРА HTV-2

Дэвид Райт

Дэвид Райт работает одним из директоров и старшим научным сотрудником Программы всеобщей безопасности Союза обеспокоенных ученых, Кембридж, Массачузетс, США.

Почтовый адрес для корреспонденций: David Wright, Union of Concerned Scientists, 2 Brattle Square, Cambridge, MA 02138, USA.

Адрес электронной почты: DWright@ucsusa.org

Статья получена 19 сентября 2014 года и принята к публикации 5 марта 2015 года.

В статье "Гиперзвуковое ракетное планирующее оружие" Джеймса М. Актона, опубликованной в этом выпуске, анализируется часть полета американского гиперзвукового планирующего летательного аппарата HTV-2 после того, как он был разогнан до высокой скорости и начал входить в атмосферу¹. Для того, чтобы лучше понять испытательные полеты HTV-2, которые проводились в 2010 и 2011 годах, в этой заметке обсуждается активная часть полета ракеты-носителя на основании моделирования полета от запуска до входа в атмосферу на высоте около 100 км (в так называемой "точке прокола"). Это соответствует 1-му и 2-му сегментам траектории, определенным в статье Актона: активному и внеатмосферному участкам.

Этот анализ базируется на описаниях ракеты-носителя, использованной в испытаниях HTV-2, точках падения ступеней и обтекателя ракеты-носителя и объявленных значениях скорости и высоты HTV-2 в точке входа в атмосферу.

Для планера HTV-2 было запланировано два испытательных маршрута, начинающихся на авиабазе Ванденберг в Калифорнии и заканчивающихся вблизи атолла Кваджелейн на расстоянии около 7 800 км. Участок планирования траектории "А" вытянут строго вдоль прямой линии от точки запуска до точки падения, в то время как траектория "В" сначала была направлена на запад, а затем в результате маневра на участке планирования повернулась на юг в направлении точки падения (смотрите рисунок 3 в статье Актона). Хотя испытательные полеты до окончания программы проводились только по траектории "А", Управление перспективных исследований Министерства обороны США (DARPA) раскрыло проектные параметры обеих траекторий, приведенные в таблице 1.

Задача этого анализа состоит в том, чтобы определить три неизвестных: трехмерные траектории полетов ракеты-носителя "Minotaur" по маршрутам "А" и "В" и массу полезной нагрузки ракеты-носителя, которая одинакова для обеих маршрутов. Полезная нагрузка включает в себя планер HTV-2 и устройство отделения, которое соединяет планер с адаптером полезной нагрузки. Поскольку ожидается, что масса устройства отделения составляет только 10 или 20 кг, то в пределах точности расчетов масса планера HTV-2 будет совпадать с массой полезной нагрузки².

Траектории полета рассчитывались с помощью компьютерной программы, которая интегрировала уравнения движения ракеты-носителя вокруг круглой Земли с реалистичной моделью атмосферы (смотрите раздел "Техническое замечание"). Ракета-носитель "Minotaur" запускалась в вертикальном направлении и ее траектория контролировалась изменением направления вектора тяги относительно вектора скорости.

Исходными параметрами для расчета были параметры ракеты-носителя "Minotaur" и расположения полей падения ее ступеней. Анализ включал в себя итеративный процесс изменения массы полезной нагрузки и проверки возможности следования ракеты носителя по траектории, на которой сброс ступеней ракетыносителя "Minotaur" происходит в зоны, объявленные для испытания, и которая доставляет планер HTV-2 в точку входа в атмосферу с параметрами, заданными для траекторий "А" и "В". Таблица 1. В этой таблице приведены условия в "точке прокола" для двух траекторий, на которых Управление перспективных исследований Министерства обороны США (DARPA) планировало испытывать систему HTV-2. Считается, что эта точка соответствует высоте в 100 км. Знак "минус" перед значениями углов означает, что эти углы располагаются ниже горизонтали (источники: статья Актона, рисунок 3, и ссылка на веб-страницу http://commons.wikimedia.org/wiki/File:FalconHTV2FlightPath.jpg).

	Траектория А	Траектория В
Время	435 c	386 c
Скорость	19 700 фут/с = 6,00 км/с	23 500 фут/с = 7,16 км/с
Угол	-3 градуса	-5,03 градуса

РАКЕТА-НОСИТЕЛЬ ДЛЯ ИСПЫТАНИЙ HTV-2

В испытаниях HTV-2 применялась ракета-носитель "Minotaur 4-Lite", в которой использовались первые три ступени твердотопливной межконтинентальной баллистической ракеты "Peacekeeper"³. Значения параметров ступеней ракеты-носителя "Minotaur" приведены в таблице 2.

Таблица 2. Параметры ступеней ракеты-носителя "Minotaur". Для согласованности с другими параметрами таблицы удельный импульс на уровне моря для первой ступени был принят равным 259 с, а не 229 с, как указано в источнике. Хотя значения параметров из различных источников несколько отличаются друг от друга, эти изменения лежат в пределах точности анализа, проведенного в данной статье (источник: веб-страница http://www.spacelaunchreport.com/mintaur4.html).

Ступень	1	2	3
Двигатель	SR-118	SR-119	SR-120
Диаметр ступени, м	2,34	2,34	2,34
Масса топлива, т	45,37	24,49	7,07
Общая масса, т	48,99	27,67	7,71
Удельный импульс, с	259 (на уровне моря) 282 (в вакууме)	309 (в вакууме)	300 (в вакууме)
Сила тяги, Т	209 (на уровне моря) 226,8 (в вакууме)	124,7 (в вакууме)	29,48 (в вакууме)
Длительность горения, с	56,4	60,7	72

Масса обтекателя полезной нагрузки, который закрывает ее при запуске и сбрасывается в начале полета, приблизительно равна 450 кг⁴. Дополнительная масса конструкции ракеты-носителя, которая включает различные переходники между ступенями, подсистему наведения и управления, модуль адаптера полезной нагрузки и прочие подсистемы, может быть оценены из анализа массовой сводки ракеты-носителя "Minotaur 5", которая включает в себя две небольшие верхние ступени. По данным НАСА взлетная масса "Minotaur 5" равна 89,37 т, включая полезную нагрузку 0,38 т⁵. Вычитая массы ступеней⁶ и обтекателя, можно получить, что дополнительная масса конструкции равна 0,86 т. Рисунок 1 показывает, что конструкция "Minotaur 4-Lite" схожа с конструкцией "Minotaur 5", так что можно предположить, что дополнительная масса конструкции "Minotaur 4-Lite" равна примерно 0,8 т. Поскольку исходные данные для определения этой массы были получены не из одного источника, и включали в себя некоторую естественную неопределенность, эту величину следует рассматривать как приблизительную.

Методология

Как отмечалось выше, описания Управлением перспективных исследований Министерства обороны США (DARPA) программы испытаний HTV-2 указывают на то, что оно планировало испытательные полеты по двум различным маршрутам с запуском из Калифорнии и падением в океан вблизи атолла Кваджелейн. Запуски производились с 8-го комплекса космических запусков (SLC-8) на авиабазе Ванденберг в Калифорнии. Для запуска 22 апреля 2010 года было выпущено Уведомление морякам (NOTMAR), в котором были перечислены

четыре зоны неподалеку от берега в районе комплекса SLC-8, в которых ожидалось падение частей ракетыносителя в океан⁷. Три первые зоны (A, B, C) показаны на рисунках 2 и 3.

Рисунок 1. Сравнение ракет-носителей "Minotaur 4" и "Minotaur 5" (источник: Minotaur IV Users Guide http://www.orbital.com/LaunchSystems/Publications/Minotaur IV Guide.pdf).

Рисунок 2. Зоны NOTMAR A и B (источник: GoogleEarth).

Рисунок 3. Зоны NOTMAR В и С. Приблизительная проекция траектории ракеты-носителя на земную поверхность показана тонкой белой линией (источник: GoogleEarth).

Зона А, которая простирается примерно на 30 км от пусковой площадки, предположительно относится к падению корпуса первой ступени (смотрите таблицу 3).

Большой размер зоны В, которая располагается на расстояниях от 60 до 250 км от пусковой площадки,

предположительно относится к падению обтекателя полезной нагрузки, поскольку большое хначение отношения площади и массы обтекателя приводит к сильному влиянию атмосферы на его падение на Землю, с чем связана большая неопределенность в расположении места падения. Это может указывать на сравнительно ранний сброс обтекателя во время работы второй ступени, что типично для запусков, в которых ракетные двигатели разгоняют относительно небольшую массу⁸.

Таблица 3. В этой таблице приводятся приблизительные расстояния от двух границ каждой зоны NOTMAR до точки запуска.

30HA	Расстояния от двух границ зоны до точки запуска	
A	0 – 30	
В	60 – 250	
С	570 – 780	
D	2 300 – 3 600	

Зона С предположительно является зоной падения корпуса второй ступени. На рисунке 4 показаны зоны В и С вместе с зоной D, которая предположительно является зоной падения корпуса третьей ступени и располагается вблизи Гавайских островов. Из этого рисунка очевидно, что для этого испытательного полета, который следует по маршруту "А", вторая ступень ракеты-носителя "Minotaur" продолжала движение в первоначальном направлении запуска, а третья ступень использовалась для поворота траектории примерно на 16 градусов от этого направления, направляя по относительно прямому пути к намечаемой точке падения вблизи атолла Кваджелейн. Ниже этот поворот будет называться маневром излома. Приблизительная проекция траектории ракеты-носителя на земную поверхность на рисунках 2, 3 и 4 показана тонкой белой линией.

В описаниях испытаний указано, что ракета-носитель "Minotaur" предоставляет больше скорости, чем это требуется для траектории "А" и что для уменьшения скорости в конце участка разгона требуются "маневры управления энергией"⁹, так что маневр излома третьей ступени может служить способом уменьшения энергии на для траектории "А".

Для запланированного полета по траектории "В" проекция траектории ракеты-носителя на земную поверхность в начале полета была такой же, как у траектории "А", но затем она продолжалась в том же самом направлении вдоль всего участка разгона. Возможно, что ранняя часть полета проектировалась с учетом требований траектории "В". Поля падения для траектории "В" никогда не раскрывались; для этого анализа мы предполагаем, что зоны А, В и С являются теми же самыми, которые были объявлены для траектории А.

Рисунок 4. Зоны NOTMAR B, C и D (источник: GoogleEarth).

АНАЛИЗ УЧАСТКА РАЗГОНА

Представленный выше итеративный анализ, в котором используется ракета-носитель "Minotaur" с параметрами, приведенными в таблице 2, показывает, что масса планера HTV-2 приблизительно равна 1 000 кг. Эта масса используется в обсуждаемых ниже расчетах траектории.

Поле падения первой ступени находится так близко к пусковой площадке, что эта ступень должна будет двигаться почти вертикально, что позволяет ракете-носителю быстро набирать высоту (смотрите рисунок 5). Моделирование показывает, что угол в момент выгорания ступени будет равен примерно 87 градусам (3 градуса от вертикали), скорость будет равна 1,4 км/с, а высота равна 32 км.

Во время работы второй ступени ракета-носитель начнет поворачиваться и траектория станет более пологой. Угол в момент выгорания второй ступени будет равен примерно 10 градусам, а скорость будет равна 3 км/с (смотрите рисунок 5).

Рисунок 5. На этом рисунке показан активный участок ракеты-носителя "Minotaur" на траектории "А" (сплошная линия), расположения моментов выгорания двигателей (точки) и траектории пустых первой и второй ступеней, и обтекателя (штриховые линии). По горизонтальной оси отложена дальность (в км), по вертикальной оси – высота в км. Надписи на рисунке (слева направо): 1 – корпус ступени 1; 2 – обтекатель; 3 – выгорание ступени 2; 4 – выгорание ступени 3; 5 – корпус ступени 2.

Результаты не очень чувствительны к моменту сброса обтекателя, который должен произойти во время работы второй ступени, если зона В соответствует обтекателю. В проведенных расчетах обтекатель должен быть сброшен на высоте 50 км для того, чтобы упасть вблизи центра зоны падения (это произойдет на 69-ой секунде полета). В момент сброса скорость ракеты-носителя будет равна всего лишь 1,5 км/с, так что динамическое давление (ρV^2) составит всего 1% от своего максимального значения, которое достигается на высоте 11 км. Поэтому сброс обтекателя в этот момент не создаст проблем для полезной нагрузки. Сброс обтекателя на высоте 60 км приведет к тому, что обтекатель окажется на дальнем краю зоны падения; при еще более позднем сбросе он приземлится за пределами зоны падения.

Кривая полета, показанная на рисунке 5, одинакова для траекторий "А" и "В" вплоть до выгорания ступени 2.

Траектория "А"

Мы должны оценить для траектории "А" количество энергии, использованное для поворота плоскости траектории на 16 градусов в маневре излома, показанном на рисунке 3. Общая способность ракетной ступени ускорять – для увеличения скорости или для маневра – характеризуется приращением скорости, или ∆V. Общее ∆V для третьей ступени ракеты-носителя "Minotaur" равно¹⁰:

$$\Delta V = g_0 I_{sp} \ln \left(M_i / M_f \right) \tag{1}$$

где M_i – масса ступени и полезной нагрузки в начале работы третьей ступени, l_{sp} – удельный импульс ракетного двигателя, M_i – масса ступени и полезной нагрузки в конце работы третьей ступени, и g_0 = 9,8 м/с. В этом случае M_i = 7,71 + 0,8 + 1,0 = 9,51 т и M_f = M_i - 7,07 = 2,44 т, где 7,71 и 7,07 равны соответственно полной массе и массе топлива третьей ступени (смотрите таблицу 1), 0,8 – дополнительная масса конструкции ракетыносителя и 1,0 – масса полезной нагрузки. Согласно уравнению (1), при l_{sp} = 300 с ΔV = 4,0 км/с. Поскольку в этой точке траектория по существу горизонтальна, потери из-за гравитации пренебрежительно малы, и все ΔV доступно для увеличения скорости или маневрирования¹¹.

Требующееся для изменения направления на угол *θ* скорости V объекта ∆V равно¹²:

$$\Delta V = 2V\sin\left(\theta/2\right) \tag{2}$$

Как отмечалось, маневр излома соответствует углу θ, равному 16 градусам. Для траектории "А" во время работы третьей ступени скорость увеличивается от 3 до 6 км. Уравнение (2) показывает, что при меньших скоростях V для поворота требуется меньшее приращение ΔV, так что предполагалось, что маневр произво-

дится приложением поперечной тяги на начальной стадии работы третьей ступени, где скорость изменяется от 3 до 4,5 км/с. Используя среднюю скорость V = (3 + 4,5)/2, из уравнения (2) можно получить, что для маневра потребуется $\Delta V = 1,0$ км/с.

Этот результат показывает, что для маневра излома потребуется приблизительно одна четверть от общего ΔV ступени. Поэтому при расчете активного участка траектории "А" тяга третьей ступени при учете энергии, использованной в маневре, сократится примерно на 25%.

Расчеты траектории показывают, что включение этого маневра может воспроизвести траекторию, которая выполняет условия в точке входа в атмосферу из таблицы 1 для траектории "А" через 435 с после запуска, и что это произойдет на расстоянии примерно в 1 800 км от пусковой площадки. Эти расчеты дают также точки падения для ступеней и обтекателя ракеты-носителя "Minotaur" в заявленных зонах NOTMAR.

В этом случае третья ступень прекращает работу при скорости в 6,0 км/с с углом возвышения 3,7 градуса на высоте 123 км. Корпус третьей ступени падает на расстоянии 2 500 км.

Траектория "В"

Предполагается, что на траектории "В" не будут использоваться маневры сброса энергии. В этом случае третья ступень прекращает работу при скорости в 7,1 км/с с углом возвышения 0,8 градуса на высоте 110 км; рассчитанная траектория показана на рисунке 6 пунктирной линией. Корпус третьей ступени падает на расстоянии 3 200 км.

Расчеты траектории показывают, что эта траектория выполняет условия в точке входа в атмосферу из таблицы 1 для траектории "В" через 376 с после запуска, и что это произойдет на расстоянии примерно в 1 700 км от пусковой площадки. Эти расчеты дают также точки падения для ступеней и обтекателя ракетыносителя "Minotaur" в заявленных зонах NOTMAR.

Рисунок 6. На этом рисунке сравниваются траектории "А" и "В" от запуска до точки входа в атмосферу (на высоте 100 км). Отметим, что вертикальная ось растянута по сравнению с горизонтальной, что преувеличивает различие между траекториями в углах входа в атмосферу. По горизонтальной оси отложена дальность (в км), по вертикальной оси – высота (в км). Надписи на рисунке (слева направо): 1 – выгорание ступени 1; 2 – выгорание ступени 2; 3 – выгорание ступени 3; 4 – выгорание ступени 3; 5 – траектория А; 6 – траектория В; 7 – вход в атмосферу В; 8 – вход в атмосферу А.

ЗАКЛЮЧЕНИЕ

Эти расчеты показывают, что использование параметров для ракеты-носителя "Minotaur 4-Lite" и местоположений полей ступеней из уведомления NOTMAR для испытания в апреле 2010 года позволяет найти траектории активного участка, которые дают параметры входа в атмосферу, совпадающие с объявленными Управлением перспективных исследований Министерства обороны США (DARPA) для обеих траекторий "А" и "В".

Кроме того, из этих расчетов следует, что масса планера HTV-2 приблизительно равна 1 000 кг.

Как отмечалось выше, эти расчеты предполагают, что траектория "В" не требует маневров управления энергией, и что единственным таким маневром, требующимся для траектории "А", является маневр излома. Если, однако, суммарная масса планера HTV-2 и конструкции ракеты-носителя будет значительно меньше предполагавшейся выше, то для обеих траекторий могут потребоваться дополнительные маневры, которые будут тогда более сложными, чем показанные выше простые формы.

Техническое замечание

Поскольку основной целью статьи является траектория запуска только на ранней стадии полета, в расчетах можно использовать уравнения движения ракеты-носителя для круглой не вращающейся Земли с атмосферой¹³. Сила тяги первой ступени будет меняться с высотой из-за изменения атмосферного давления на срезе сопла двигателя:

$$T(h) = T(0) + A_{Nozzle} \left(p(0) - p(h) \right)$$
(3)

где A_{Nozzle} – площадь среза сопла, T(h) – сила тяги на высоте h, и p(h) – атмосферное давление на высоте h. Значения силы тяги первой ступени в таблице 2, вместе с p(0) = 101 325 H/м² на уровне моря могут быть использованы для определения A_{Nozzle} = 1,7 м².

ПРИМЕЧАНИЯ И ССЫЛКИ

- 1. James M. Acton, "Hypersonic Boost-Glide Weapons", Science & Global Security, 23, (2015): 191-219.
- 2. Orbital Science Corporation's Users Guide for the Minotaur, Table 2.5.2-1, 57, June 2013, http://www.orbitaLcom/LaunchSystems/Publications/Minotaur_IV_Guide.pdf.
- T. Huynh and J. Kriz, "Final Environmental Assessment for Hypersonic Technology Vehicle 2 Flight Tests," 28 April 2009, <u>http://www.dtic.mil/get-tr-doc/</u> pdf?AD=ADA544343.
- 4. Spaceflight 101, "Minotaur V Launch Vehicle Information," <u>http://www.space</u>flight101.com/minotaur-v-launch-vehicle-information.html.
- 5. Это взято из документа "NASA press kit for LADEE mission", и это применимо к варианту M-V с верхними ступенями Star 48BV и Star 37FM: <u>http://www.nasa.gov/sites/</u> default/files/files/LADEE-Press-Kit-08292013.pdf.
- 6. Для ракеты-носителя Minotaur V это включает массу двух дополнительных ступеней: 2,16 т для Star 48VB и 1,15 т для Star 37FM (смотрите ATK Space Propulsion Products Catalog, <u>http://www.atk.com/wp-content/uploads/2013/02/ATK-Motor-Catalog-2012.pdf</u>.)
- 7. Notice to Mariners, 1 May 2010, 111.1—10, http://msi.nga.mil/MSISiteContent/StaticFiles/NAV_PUBS/UNTM/201018/NtM_18-2010.pdf
- Эта временная циклограмма не согласуется с анимацией сегментов запуска DARPA, которая показывает, что обтекатель полезной нагрузки был сброшен позже на участке разгона, незадолго перед тем, как планер HTV-2 отделился от верхней ступени ракеты-носителя; смотрите <u>http://www.darpa.mil/Flight</u> %200verview%20slide-UPDATED%20as%20of%2029%20Jul%2011.html.
- 9. G. Warwick, "DARPA's HTV-2 Didn't Phone Home," *Aviation Week* Blog, 24 April 2010, http://www.aviationweek.com/Blogs.aspx?plckBlogId=Blog:27ec4a53-dcc8-42d0-bd3a-01329aef79a7& plckPostld=Blog:27ec4a53-dcc8-42d0-bd3a-01329aef79a7 Post:70769585-4348-4701-889a-f02c58f38314.
- D. Wright, L. Grego, and L. Gronlund, "The Physics of Space Security," Union of Concerned Scientists, 75, 2005. <u>http://www.ucsusa.org/nuclear_weapons_and_</u> globaLsecurity/solutions/space-weapons/the-physics-of-space-security.html.
- 11. В качестве проверки, расчет траектории "В" показывает, что во время работы третьей ступени скорость ступени возросла на 4 км/с.
- 12. Wright et al., 64 (ссылка 10).
- Смотрите Appendix B, L. Gronlund and D. Wright, "Depressed Trajectory SLBMs," Science and Global Security 3 (1992): 101-159, <u>http://scienceandglobalsecurity</u>.org/archive/sgs03gronlund.pdf.