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Storage MOX: A Third Way
for Plutonium Disposal?*

J. Kang, F. N. von Hippel, A. MacFarlane, R. Nelson

By 2010, the UK could have 110 tons of separated civilian plutonium and Russia up
to 150 tons of excess weapons and civil plutonium. Neither country has enough LWR
capacity for disposal in MOX fuel. Plutonium disposal via MOX fuel is also difficult for
some other countries. Combined disposal with HLW may be infeasible after reprocessing
ends because the reprocessing enterprises are under pressure to rapidly solidify their
stocks of liquid HLW. In a third approach, low-cost MOX pins would be mixed directly
with spent fuel in final-disposal casks. We have analyzed the economics and prolifera-
tion resistance of this “storage MOX” option and conclude that it should be considered
seriously.

INTRODUCTION

There are few physical barriers to the quick use of separated plutonium for nu-
clear weapons. This is why a U.S. National Academy of Sciences (NAS) report
has described the United States and Russian stockpiles of excess weapons plu-
tonium as “a clear and present danger to national and international security.”!
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Similarly, a Royal Society report on the United Kingdom’s very large stockpile
of separated civilian but weapons-usable plutonium concluded that, even in
stable Britain, “the chance that the stocks of plutonium might, at some stage,
be accessed for illicit weapons production is of extreme concern.”? There is, con-
sequently, a developing consensus that plutonium cannot be left indefinitely in
separated form. It must be made less accessible for weapons use.

The U.S. and Russia have proposed programs to dispose of at least 34 tons
each of excess weapons plutonium in mixed-oxide (MOX) uranium-plutonium
fuel for light-water reactors (LWRs). Prior to 2002, the U.S. planned to “im-
mobilize” a fraction of its separated plutonium in metal-clad ceramic cylinders
embedded in canisters of high-level-waste (HLW) glass.? If the two countries
were to reduce their stockpiles of weapon-grade plutonium to about 20 tons
each—equivalent to perhaps 5,000 warheads*—the U.S. could declare an addi-
tional 27 tons of plutonium excess and Russia on the order of 80.°

In part, the emphasis on MOX fuel in both Russia and the U.S. reflects the
fact that MOX-fuel fabrication and utilization are well-developed technologies
in Western Europe. It also reflects the preference of Russia’s Ministry of Atomic
Energy (MinAtom). Regardless of current economics, MinAtom insists that the
fuel value of its separated plutonium must be utilized. It also insists that the
isotopics of U.S. excess weapon-grade plutonium should be degraded to reactor
grade by neutron irradiation.

There are also large stockpiles of separated civilian plutonium, totaling
about 200 tons, mostly stored at civilian reprocessing plants in Britain, France,
and Russia (see Table 1). Because of limited LWR capacity, MOX disposal will
be straightforward for less than half of this separated civilian plutonium. The
UK. is projected to have a stockpile of about 115 tons and only one LWR by
2010.5 Russia has an LWR capacity that is sufficient at most to deal with the
weapon-grade plutonium that it has declared excess. Some other countries that
have sufficient LWR capacity may have problems licensing the reactors to use
MOX. Virtually all countries have thus far been reluctant to use MOX fuel
fabricated from other countries’ plutonium.”

Disposal of plutonium with high-level waste would, in principal, be possi-
ble for reprocessing establishments in Britain, France, and Russia. They are
reluctant to pursue such an “antireprocessing” option, however, as long they
still have hopes for additional reprocessing contracts. They are also required to
minimize their backlogs of liquid high-level waste and may therefore no longer
have sufficient stocks for this disposal approach when they cease reprocessing.?

A third option for plutonium disposal, “storage MOX,” was proposed by
a group of German analysts in 1999.° According to this concept, MOX pins
would be produced but not used as fuel. Instead, they would be mixed directly
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Table 1: Stocks of civilian unirradiated plutonium.® (End of year in metric tons)
_____________________________________________________________________________________________________________|

Total Pu Foreign-owned Pu in foreign

Country in-country Pu in-country countries
Belgium (1999) 3.9 ? 0.9
Britain (2000) 78.1 16.6 0.9
France (2000) 82.7 38.5 0
Germany (1999)¢ 7.2 0 ~17

[taly 0 0 0.5
Japan (2000) 5.3 0 32.1
Netherlands 0 0 1.2
Russia (2000)¢ 33.4 0 0.0006
Sweden 0 0 0.8
Switzerland (2000)¢ 0.6 0 <5
Totals ~200 ~585 ~80

9For countries reporting, based on national declarations to the International Atomic Energy
Agency (see Infcircsd49 at http://www.iaea.org/worldatom/Documents/Infcircs). For coun-
tfries not reporting (Italy, Netherlands, and Sweden), 1998 estimates by the Institute for Science
and International Security, <http://www.isis-online.org>.

bBelgiurrp does not provide a breakdown of its in-country plutonium by domestic and foreign
ownership.

cGermany does not report the amount of separated plutonium that it has stored at foreign re-
processing plants. Our estimate assumes that all plutonium in foreign countries not accounted
for by other countries is German, neglecting foreign plutonium in Belgium and Swiss plutonium
in other countries.

d’IA‘IIhO.Ugh Russia reprocesses foreign spent fuel, it assumes ownership of the recovered
plutonium.

eSwitzerland only declares the total amount of plutonium in fuel that it has sent abroad to
be reprocessed.

with spent fuel in final-disposal casks. We have carried out additional cost,
criticality, and nonproliferation analyses of this approach and find that it is
worthy of serious consideration.

Figure 1 shows flow diagrams for the disposition of plutonium in fuel and
storage MOX.

COST

Since storage MOX would not be designed for reactor use, it could be designed
to less exacting standards and with higher plutonium content than used in
LWRs. Given the current high cost of conventional MOX-fuel production, this
could substantially offset the savings in LEU fuel costs associated with MOX
fuel use.

According to a study done in 1999 for an anonymous German utility,
“first-generation” storage MOX containing 9.2 percent plutonium could be
fabricated at an existing European MOX fuel-fabrication facility for about
1850 Euros ($1665 per kg heavy metal or HM, i.e. uranium plus plutonium)
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Figure 1: Steps in the disposition of plutonium in fuel and storage MOX.

with the current production arrangements for fuel MOX.1? This corresponds to
$18,000 per kilogram of contained plutonium. If the design and quality control
requirements imposed by reactor use were relaxed and less costly zirconium
were used!! and fissile plutonium loadings were raised to 10 percent of heavy-
metal content (15 percent total plutonium), the cost per rod was estimated to
increase by about 10 percent because of increased criticality concerns with the
higher plutonium concentrations. However, because of the higher loadings, the
cost per kilogram of contained plutonium could be reduced by one third to about
$12,000/kgPu for “second generation” storage MOX.

There would be other additional costs for storage MOX, however, since
the storage MOX would not replace LEU fuel. One cost would originate from
the need for additional storage/disposal containers for the storage MOX and
the associated emplacement costs. We estimate these additional costs at about
$1000/kgPu.'?

For comparison, for a fabrication cost of $1800/kgHM for MOX fuel!3
containing 6.1-8.5 percent plutonium/kg and displacing LEU fuel worth
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$800-1200/kgU, the cost of using fuel MOX for plutonium disposition would
be $7,100-16,400/kgPu. The cost within this range depends upon the pluto-
nium content of the MOX fuel and the enrichment of the LEU fuel that is
being displaced, that is, upon the design burnup of the MOX and LEU fuel.
Higher burnup requires higher plutonium content or enrichment. We consider
a burnup range of 43—-53 MWd/kgHM here. The plutonium content also depends
upon the fissile content of the plutonium—which decreases with increasing
burnup of the spent fuel from which it was recovered. We have assumed a
range of 33—43 MWd/kgHM for this burnup.'* The high end of the plutonium-
disposition cost range reflects current practice and the lower end what is
expected within the decade.

Based on these numbers, in a future with high-burnup plutonium used
in high-burnup MOX, plutonium disposition in fuel MOX would be less costly
than in storage MOX. It can also be seen however that, for countries that do not
have an adequate MOX fuel option, the cost of plutonium disposition via storage
MOX would be comparable to the current costs for subsidizing disposition via
fuel MOX. The cost comparison is summarized in Table 2.

Cost estimates for MOX fuel fabrication vary widely, however. For exam-
ple, the U.S. government’s most recent cost estimate for the cost of disposing of
34 tons of excess weapon plutonium in fuel MOX comes to about $70,000/kgPu.!®
The current estimate of the cost of disposing in MOX of 34 tons of Russian ex-
cess weapon plutonium is about $44,000/kgPu.'® For such high fuel-fabrication
costs, the cost savings in the fabrication of storage MOX would be approximately
equal to or win out over the LEU-fuel cost savings associated with fuel MOX.
To illustrate this, we show in Table 2 estimates of the cost of storage MOX

Table 2: Comparison of disposal costs via fuel MOX and storage MOX. (Dollars per
kg plutonium)

Fuel MOX (Design burnup/burnup of
spent LEU fuel from which plutonium is Storage MOX

derived, MWd/kgHM) (10% Puy)
53/43 43/33
Fabrication $21,200 $29,500 $12,000
Fuel credit $14,100 $13,100
Additional storage cask and — — $1000
emplacement costs
Net cost $7,100 $16,400 $13,000

Cost of disposing of 34 tons  $70,000 (including $22,000 fuel credit) $73,000
US WgPu in fuel MOX

Cost of disposing of 34 tons  $44,000 (including $10,000 fuel credit) $27,000
Russian WgPu in fuel MOX
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containing 10% fissile plutonium, assuming that the percentage of weapon-
grade plutonium in the U.S. and Russian fuel MOX will be 5.3 percent and
4.4 percent respectively, and that the fissile isotopic content of this weapons
plutonium is 94 percent. We assume that the costs of the MOX fuel-fabrication
facility are fixed and that the other costs per kg HM are 10% more for storage
MOX than for fuel MOX.

CRITICALITY

For specificity, we have assumed that the mixture of storage MOX and spent
fuel pins are disposed of in the Pollux cask developed for the disposal of
German spent fuel. These casks contain neutron-absorbing borated steel plates
between the fuel compartments (see Figure 2). With these plates, the casks
can hold even fresh mixed-oxide fuel rods containing up to 5.3 percent of fis-
sile plutonium (Pu-239 + Pu-241) and be flooded with water without going
critical.l”

The borated steel plates may not guarantee long-term subcriticality in a
final repository because the boron is expected to leach away from the waste
package much faster than plutonium.!® Even without the boron, however, our
calculations show that a Pollux cask would be subcritical when filled with stor-
age MOX pins containing 10 percent fissile plutonium oxide by weight mixed
with spent LEU fuel pins in a ratio of 1 to 2 (see Table 3). Even an infinite
hexagonal array of storage MOX rods mixed with spent LEU rods in the same
ratio (see Figure 3) would be subcritical (ke < 1).1°

It would be possible to add neutron absorbers to storage MOX. Both gadolin-
ium and hafnium make excellent neutron absorbers, and both form oxides
(HfO3 and Gd2O3) that are compatible with the crystalline structure of PuOq
and resistant to chemical leaching. For this reason, the U.S. design for immo-
bilizing plutonium in high-level waste proposed to mix both gadolinium and
hafnium in approximately one-to-one atomic ratios with weapon-grade pluto-
nium in a ceramic storage form that would then be imbedded in high-level-
waste glass.?? These neutron absorbers would cost less than $1000/kgPu at
this concentration.?! However, the savings in the fabrication process from not
having to worry about criticality should more than offset this cost.?? Table 3
shows the effect of adding such neutron absorbers on the criticality of a mix of
1/3 storage MOX rods with 2/3 spent LEU fuel rods. The effect of the neutron
poisons is less in the dry cask because the poisons are most effective for thermal-
ized neutrons. With the neutron poisons, it would be possible to load a Pollux
cask with 100% storage MOX and still stay comfortably subcritical.??> This
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Figure 2: POLLUX cask design specifications. (a) shows a horizontal cross-section of the
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cask and spent fuel inside the inner cask compartments, and the dimensions of the cask,
after Janberg (1998), (c) model used in criticality calculations. (Confinued)
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Figure 2: (Continued)

provides assurance that a mistake in loading would not result in a criticality
accident.

IMPLICATIONS FOR GEOLOGICAL DISPOSAL

As already noted, more casks would be required to dispose of plutonium via
the storage-MOX route than via the fuel-MOX route. The spent MOX fuel dis-
places spent LEU fuel. Storage MOX does not displace spent fuel. However,
the capacity of a geological repository is determined more by radioactive decay
heat than by the volume of the waste form and, for 500 years after discharge,
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Table 3: Neutron multiplication (kes) of 1/3 storage MOX, 2/3 spent LEU fuel.
______________________________________________________________________________________________________________]

2360 rods in a Pollux cask

Infinite array w.o. boron
Flooded Dry Flooded Dry
Without neutron poisons 0.89 0.75 0.73 0.49
With neutron poisons 0.63 0.71 0.53 0.47

the rate of heat output from the spent MOX fuel is greater than the combined
heat outputs from the equivalent amount of storage MOX plus spent LEU fuel
(see Figure 4). This is because the fuel MOX contains much larger quantities
of heat-generating Pu-238 (half-life = 88 years) and Am-241 (432 years) than
the equivalent amount of storage MOX plus spent LEU fuel >4

Not having the constraint that the storage MOX be a good fuel makes it
possible to design it to be a better plutonium storage medium. We have al-
ready mentioned the possibility of adding neutron absorbers. It would also be
possible to make the waste form out of a more chemically durable base mate-
rial than UOy. Uranium dioxide oxidizes readily to higher oxides and there-
fore is expected to degrade relatively rapidly in a repository with oxidizing

" Neutron

Figure 3: Hexagonal cell with neutron reflecting walls used in calculating the criticality of
an infinite horizontal array of 2/3 spent LEU fuel and 1/3 storage MOX rods.
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Figure 4: Comparison of the decay heat of a ton of spent MOX fuel (43 MWd/kgHM) with
that from a ton of spent LEU fuel (also 43 MWd/kgHM) plus 0.47 tons of storage MOX
containing the same amount of plutonium as the fresh MOX fuel.

conditions such as the U.S. repository being developed within Yucca Mountain,
Nevada.?

One chemically durable, radiation resistant alternative to storage UQO; is
zirconia (ZrQ,). If storage MOX is seriously considered, this variant would be
well worth investigating. It should be possible to adapt existing MOX fabrica-
tion facilities to fabricate a zirconia-based storage form. The principal necessary
change would be higher-pressure presses for forming the ceramic into pellets.
One tradeoff for the greater durability of the zirconia form would be that, in the
absence of an admixture of depleted uranium, the U-235 decay product to which
plutonium-239 decays with a 24,000-year half-life, will be highly enriched. How-
ever, it is not clear that the plutonium in the less chemically durable UOs-based
form would remain associated with the uranium long enough for the uranium
to be an effective isotopic denaturant. Of course, making storage MOX more
chemically durable would not solve the durability problem of the UOy based
spent LEU fuel.
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PROLIFERATION RESISTANCE

Could a final-disposal cask be opened, the storage MOX rods separated from
the contained spent-fuel rods, and the plutonium recovered much more quickly
than an equal amount of plutonium could be separated out of spent fuel? A very
similar question was examined in 2000 by a U.S. National Academy of Sciences
(NAS) panel with respect to the then-proposed U.S. plutonium immobilization
form.26

The NAS report asked whether a subnational group could use explosives
to quickly separate the plutonium-carrying ceramic cylinders from the sur-
rounding high-level waste glass. In the case of storage MOX, the problem of
physical separation of the storage MOX could be relatively easy but, if the pins
appeared externally identical to spent fuel, separation would require radia-
tion measurements to determine the presence or absence of highly-radioactive
fission products.??

The separation process could be carried out remotely in a large hot cell
or under water in a spent-fuel storage pool. If final-disposal casks containing
storage MOX and spent fuel are blocked from ready access to such facilities by
distance or other barriers, however, it is implausible that a subnational group
could separate out the storage MOX and escape in the time likely to be available.

The first task of plutonium thieves, once they had penetrated site security
and reached a disposal cask would be to open it. In the case of the Pollux
cask, the outer lid, weighing about 2.7 tons, would be bolted on. The middle
lid, weighing one quarter of a ton, would be welded on. Finally, the inner lid,
weighing almost 1 ton, would be screwed on. It would ordinarily take at least
several hours to open the cask.

The NAS study asserts that the lid of a spent-fuel shipping cask “can be
removed by cutting or blasting in a matter of a few minutes.” However, removing
the top would also remove the radiation shielding that it provides. The thieves
would then be faced with having to pull out the storage MOX in a radiation
field that, if unshielded, would be high enough to give a lethal dose within tens
of minutes.?8

Recovery of the storage MOX could be made more time consuming if the
final-disposal cask were filled with a material that would “glue” it to the spent
fuel. A plausible material would be a low-melting-point metal such as lead.
The filler material—or a mesh imbedded in it—would have to grip the pins
strongly enough to assure that their ends would break off before they could be
withdrawn.

Even with such additional measures, however, a host nation could recover
the storage MOX relatively quickly. For example, it might take only a day or
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so to heat up the cask to the melting point of the filler material and drain the
material out. Nevertheless, storage MOX in a massive container mixed with
highly-radioactive spent fuel would be preferable to the indefinite storage of
separated plutonium with its associated security risks.

Some object to the immobilization of weapon-grade plutonium because, un-
like irradiation, it would leave the plutonium weapon grade. This objection
is sometimes overstated since reactor-grade plutonium is weapon useable.?’
In any case, for most of the cases discussed here, the plutonium is already
reactor-grade and the objection is therefore inapplicable. Even in the case of
weapon-grade plutonium, the isotopic mix could be degraded by mixing with
reactor-grade plutonium.

A complete proliferation analysis would take into account the possibility
of diversion during fabrication, transport, and loading of the storage MOX.
However, these risks would be essentially the same as at the corresponding
stages for fresh MOX fuel. The stage of loading storage MOX into the stor-
age cask would be the counterpart of the stage of loading the fresh MOX fuel
into a reactor core. Similar monitoring and security arrangements would be
required.

FABRICATION

The obvious place to make storage MOX is in existing MOX fuel-fabrication
facilities after they are no longer occupied with the production of fuel MOX.
Table 4 shows the existing and planned MOX fuel-fabrication facilities. The

Table 4: Storage-MOX production capacities of existing and planned MOX
fuel-fabrication facilities.

Capacity (Tons/year)
Reactor grade
Facilities (status) Heavy metal in fuel plutonium (15% HM)
OLD
Belgium: Dessel (1973-) 35 5
France: Cadarache (1970-) 40 6
NEW
France: Melox (1995-) 1156— 1957 18-29?
UK: Sellafield (2002-) 120 18
PLANNED
US: Savannah R. (20077?) ~50 7.5
Russia: MOX FFF (20077?) ~90 13
Japan: Rokkasho (20087?) 130 20

1 Piutonium and Highly Enriched Uranium 1996, p. 197 except for more recent information
referenced in the text.
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older facilities, Belgium’s Dessel plant and France’s Cadarache ATPu plant,
are approaching the end of their lives and the Cadarache facility must be shut
down in any case because of seismic hazards. Cogema is seeking a license to
expand the capacity of its relatively new Melox plant to offset the shutdown
of the two older plants. Britain’s SMP plant recently received its operating
license.?° Japan is planning to build a MOX plan to dispose of the plutonium
separated at its Rokkasho reprocessing plant.3!

At full capacity, the UK. SMP plant could in seven years fabricate into
storage MOX the 115 tons of civilian plutonium that Britain is projected to
have accumulated by 2010. However, the radiation barrier would have to be
provided by Advanced Gas Reactor spent fuel, which would be distinguishable
from the LWR fuel that the SMP is designed to produce. This could facilitate the
task of a group trying to steal the storage MOX rods and would therefore put
a greater premium on “gluing” together the storage MOX and spent-fuel rods.
The proposed Russian MOX plant could similarly immobilize 50 tons of Russian
civilian plutonium in about four years. If the stalemate over the loading of MOX
fuel into Japan’s power reactors continues, its utilities too may become more
interested in storage MOX.

CONCLUSION

Given the fact that few foreign utilities are signing new contracts with the
British and French reprocessing companies and it is unlikely that their domes-
tic utilities will long be willing to carry the burden of supporting their national
reprocessing industries by themselves, the flood of newly separated plutonium
will soon begin to abate. Then it will become more possible to focus world at-
tention on the importance of eliminating the existing stockpiles of separated
plutonium. In this context, storage MOX appears a viable option for countries
with large stocks of separated plutonium for which a fuel-MOX disposal option
is not readily available. The relatively small number of existing and planned
MOX fuel fabrication facilities could deal with these “orphan” stocks of pluto-
nium relatively quickly.
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