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Keeping LWR plutonium mixed with other transuranics and with lanthanide fission
products other than 154Eu does not make it significantly more self protecting or more
difficult to fabricate into a nuclear weapon. Gamma-ray and neutron doses at one
meter, heat generation, and spontaneous-neutron emission are calculated from 1-kg
metal balls of weapon-grade plutonium, reactor-grade plutonium, and the full mix of
transuranics in high-burnup light-water-reactor (LWR) spent fuel with and without
the lanthanide fission products from the spent fuel. The total radiation dose rate from
transuranics without the lanthanides is more than three orders of magnitude lower
than the IAEA’s threshold for self-protection, 1 Sv/hr (100 rems/hr) at 1 meter. In-
clusion of either of two lanthanide fission products, 144Ce and 154Eu, could increase
the dose rate above the self-protection threshold. However, 144Ce has a half-life of
only 0.8 years and has already decayed away in all but the most recently discharged
LWR spent fuel. 154Eu has a half-life of nine years but is not recycled with the
transuranics in the pyroprocessing fuel cycle that was developed for the Integrated Fast
Reactor.
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BACKGROUND

After India’s 1974 nuclear test, which used plutonium separated using declas-
sified technology and training and equipment provided by the United States,1

the Ford and Carter Administrations decided to oppose further export of repro-
cessing technology to countries of proliferation concern. They also decided that
plutonium recycle was not required in the near term by civilian nuclear-power
programs and that the United States could therefore store spent power-reactor
fuel.

In 1993, the Clinton Administration restated this antireprocessing policy
as follows, “The United States does not encourage the civil use of plutonium
and, accordingly, does not itself engage in plutonium reprocessing.”2

The George W. Bush Administration has relaxed this antireprocessing pol-
icy somewhat. According to its 2002 National Security Presidential Directive
on National Strategy to Combat Weapons of Mass Destruction:

the United States will continue to discourage the worldwide accumulation
of separated plutonium and to minimize the use of highly-enriched uranium. As
outlined in the National Energy Policy, the United States will work in collabora-
tion with international partners to develop recycle and fuel treatment technolo-
gies that are cleaner, more efficient, less waste-intensive, and more proliferation
resistant.3

Accordingly, in 2003, the U.S. Department of Energy’s Office of Nuclear
Energy (DOE-NE) launched the Advanced Fuel Cycle Initiative (AFCI), which
then DOE Secretary Spencer Abraham described as, “research that can opti-
mize the use of the first repository [Yucca Mountain] and possibly reduce the
need for future repositories.”4

The concern about U.S. repository capacity, as elaborated in the DOE-NE’s
2003 report to Congress on the AFCI, is that

the statutory limit for the planned [Yucca Mt] geological repository, 63,000
Mt [metric tons] of civilian nuclear spent fuel, will be reached in 2015. . . . As a
result, the quantity of spent fuel produced by nuclear power plants may become
a long-term challenge to the possibility of building new nuclear power plants as
anticipated by the National Energy Policy.5

DOE-NE is therefore developing a strategy to reprocess U.S. spent
fuel that would first extract pure uranium from dissolved spent fuel
and then process, “mixtures of plutonium and selected minor actinides
for preparing proliferation-resistant fuels. . . . If implemented successfully,
this treatment technology could significantly reduce the cost of the
first repository and potentially eliminate the technical requirement for a
second.”6
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The accumulation of decay heat in the rock between the emplacement
tunnels, in the period after which forced ventilation ceases, limits the capac-
ity of an above-ground-water-level repository. With the removal of the long-
lived transuranics, the cumulative output of thermal energy by the radioac-
tive waste in the first few thousand years would be significantly reduced.
For Yucca Mountain, it has been estimated that removing the transuran-
ics would make it possible to store the remaining radioactive waste from
about five times as much spent fuel as could be stored there directly without
reprocessing.7

The DOE has been sensitive—rhetorically, at least—to the problem that
drove the U.S. away from reprocessing in the first place and insists that,
“UREX . . . can reduce the proliferation risk by avoiding the separation of pluto-
nium from other radioactive species—thereby rendering the plutonium unus-
able for weapons applications.”8

The current version of UREX (“UREX+”) that is being developed, however,
would keep the plutonium product mixed only with the relatively small quantity
of neptunium-237 present in spent fuel.9 237Np does not make the mix more
self-protecting because it is more weakly radioactive than plutonium and has
approximately the same critical mass as weapon-grade uranium.10

Another “proliferation-resistant” reprocessing technology that has at-
tracted favorable attention from the Bush Administration is “pyroprocessing,”
an electrochemical process that was developed in connection with Argonne Na-
tional Laboratory’s proposal for an Integral Fast Reactor. Each group of IFRs
would have its own integrated small reprocessing and fuel refabrication facil-
ity. Vice President Cheney’s 2001 Energy Task Force endorsed this reprocessing
technology in its National Energy Policy report:

The United States should reexamine its policies to allow for research, devel-
opment, and deployment of fuel conditioning methods (such as pyroprocessing)
that reduce waste streams and enhance proliferation resistance.11

In this article, we evaluate the proliferation resistance that would be added
if plutonium were not separated from the other transuranic isotopes in spent
LWR fuel, and then, if, as in pyroprocessing, the transuranics were not sepa-
rated from the non-europium lanthanides.12

CHARACTERISTICS OF TRANSURANICS

Table 1 shows the composition of the transuranic mix in low-enriched ura-
nium (LEU) fuel 20 years after the fuel has been discharged with a “bur-
nup” (fission energy release) of 53 megawatt-days per kilogram of heavy metal
(MWd/kgHM). It also shows the decay-heat production, spontaneous fission
neutron emission rate, and gamma and neutron dose rates from a 1-kg metal
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Table 1: Heat, neutron emission and doses from 1 kg of various pure transuranic
isotopes, the mixture in 53 MWd/kg LEU spent fuel and weapon-grade plutonium
(20 years after discharge).

Dose rate
(10−5 Sv/hr-kg)

at 1 m
Bare

critical Spont. Fiss.
Halflife mass Mass fract. Heat neutrons

Isotope (years) (kg)∗ in Trans U (W/kg) (×105/kg-sec) Gamma Neutron∗∗

237Np 2.14 × 107 57.∗∗∗ 0.066 0.022 0 0.08 —
239Np (from 2.4 days — 1.6 × 10−8 5.6 × 105 0 3.9 × 108

243Am)
Pu-tot — 14.4 0.824 19.9 4.6 0.52 0.33
241Am 432. 60.0 0.089 114 0.012 126. 9 × 10−4

242mAm 141. 9.1 9.3 × 10−5 3.84 1.49 33. 0.11
243Am 7400. 208.8 0.018 6.4 0.03 38. 0.002
243Cm 28.5 8.6 5.1 × 10−5 1900. — 60,000. 0.
244Cm 18.1 27.0 3.7 × 10−3 2830. 1.11 × 105 208. 7950.
245Cm 8500 9.2 3.9 × 10−4 5.7 - 81. 0.
TransU — 17.9 1.000 37.3 414. 22. 30.
WgPu∗∗∗∗ — 10.7 2.3 0.5 0.08 0.04

Mass fract. in Pu
236Pu 2.9 6–8 2.3 × 10−9 18,500. 349. 609. 25.
238Pu 87.7 9.6–9.8 0.029 568. 26.6 13.8 1.9
239Pu 2.4 × 104 10.1 0.555 1.92 2.3 × 10−4 0.08 1.6 × 10−5

240Pu 6.5 × 103 36.9 0.266 7.1 9.1 0.19 0.65
241Pu 14.4 13.0 0.064 3.2 — 0.18 0.
242Pu 3.8 × 105 83.4 0.085 0.113 16.9 0.03 1.2
∗For individual isotopes, from “Critical masses of bare metal spheres using SCALE/XSDRN” by
R. Q. Wright, W. C. Jordan, and R. M. Westfall, Oak Ridge National Laboratory, Proceedings of
the Annual Meeting of the American Nuclear Society, San Diego, June 4–8, 2000, p. 167. We
have checked these numbers using MCNP and the cross-section library ENDF/B-VI.5 and find
consistent results, except for 243Am, where we find a critical mass of 144 kg. For Pu-tot, WgPu,
and TransU, authors’ calculations assuming mass density of 19.86 g/cc for Pu and 19 g/cc for
TransU.∗∗Using a fluence-to-dose factor of 0.21 × 10−9 Sv-cm2 for 2-MeV neutrons, Neutron and
gamma-ray fluence-to-dose factors, Op. cit.∗∗∗“Neptunium nuclear data & criticality” by Mark Chadwick, presentation at the 53rd Cross
section evaluation working group meeting & U.S. nuclear data program meeting, common
session on nuclear data for homeland security, Brookhaven National Laboratory, Nov. 4–7,
2003, www.nndc.bnl.gov/nndc/proceedings/ 2003csewgusndp/homeland/04Chadwick.pdf
∗∗∗∗238Pu, 0.012%; 239Pu, 93.8%; 240Pu, 5.8%; 241Pu, 0.35%; and 242Pu, 0.022%, “Explosive prop-
erties of reactor-grade plutonium” by J. Carson Mark, Science & Global Security 4: 111.

ball of each transuranic isotopic, weapon-grade plutonium, and the plutonium
and transuranic mixes in the spent fuel.13

The composition of the fuel was calculated with ORIGEN 2.1,14 assuming
an initial LEU fuel enrichment of 4.4 percent 235U. The gamma radiation doses
were calculated using the American Nuclear Society’s gamma-ray fluence-to-
dose factors.15 The self-shielding of the metal ball was calculated for a density
of 19.86 g/cc using the Los Alamos MCNP4C2 Monte Carlo particle-transport
code.16 Some of the significant gamma-dose contributions were checked by
hand.17

The combined gamma and neutron dose rate from the 1-kg transuranic
sphere is about 0.5 mSv/hr—three orders of magnitude lower than the 1 Sv/hr
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level that, according to the IAEA, justifies a reduced level of physical
protection.18 Although these radiation levels would significantly increase can-
cer risks among workers exposed to them year round, it must be assumed that,
in a national or terrorist weapons program, the plutonium could be separated
chemically from the transuranic mix without radiation shielding.

Thus the admixture of nonplutonium transuranics does not increase the
proliferation-resistance of the plutonium significantly more than would a slight
dilution with chemically similar nonradioactive material.

It should be noted also that 241Am and 243Am, which, with 237Np, comprise
the bulk of the nonplutonium material in the transuranic mix, are considered
alternative nuclear materials and have bare critical masses comparable to some
of the isotopes that are present in similar concentrations in reactor-grade plu-
tonium (see Table 1).

Classified studies have concluded that, if a group could construct a nuclear
weapon with weapon-grade plutonium, it could also construct one from civil-
ian “reactor-grade” plutonium such as the mix of plutonium isotopes shown in
Table 1:

[A] subnational group using designs and technologies no more sophisticated
than those used in first-generation nuclear weapons could build a nuclear weapon
from reactor-grade plutonium that would have an assured, reliable yield of one or
a few kilotons (and a probable yield significantly higher than that).19

Because much of the nuclear-energy establishment still does not accept this
conclusion, we briefly review some of the elements of the analysis behind it.

Preinitiation. As shown in Table 1, the neutron-emission rate from reactor-
grade plutonium is about an order of magnitude greater than that from weapon-
grade plutonium, and the neutron-emission rate of the transuranic mix is
about two orders of magnitude higher than from reactor-grade plutonium alone
(because of the high spontaneous fission rate of 244Cm). The high rate of neutron
emission from reactor-grade plutonium and the transuranic mix have led some
observers to conclude that these materials are unusable in nuclear weapons.

The probable explosive yield from a Nagasaki-type solid-core implosion
weapon does depend on the rate of emission of spontaneous fission neutrons.
The implosion from subcriticality to maximum supercriticality takes about 10
microseconds. If a chain reaction begins before maximum compression (preini-
tiation), the expected yield will be reduced from about 20 kilotons to as low
as one kiloton. This is the reason the 240Pu content of the plutonium used in
the Nagasaki bomb was minimized. However, no level of spontaneous neutron
emission would reduce the yield below about 1 kiloton.20 A one-kiloton explosive
would still be a devastating weapon.

Classified studies have also concluded that the designs of modern nuclear
weapons are insensitive to preinitiation:
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[A]dvanced nuclear weapon states such as the United States and Russia, us-
ing modern designs, could produce weapons from reactor-grade plutonium having
reliable explosive yields, weight, and other characteristics generally comparable
to those of weapons made from weapon-grade plutonium.21

From a neutronics point of view, therefore, the transuranics mix would not be
significantly inferior to reactor-grade plutonium as a weapons material.

Heat management. Table 1 also shows that the rate of heat release in reactor-
grade plutonium is almost an order of magnitude greater than from weapon-
grade plutonium. For eight kilograms of reactor-grade plutonium, an amount
for which, according to weapon experts that advise the IAEA, “the possibility
of manufacturing a nuclear explosive device cannot be excluded,”22 the heat-
generation rate would be about 160 watts. If this much plutonium were shaped
into a solid sphere with a density of 16 g/cc, it would have a radius of only
6 cm and would become quite hot in air because of its small heat-transfer
area. We estimate a surface temperature of 190◦C for a bare sphere—much
higher than the 60◦C that would be reached by a similar sphere of weapon-grade
plutonium.23 Inside an insulating layer of explosives, the plutonium would heat
up to much higher temperatures. Since most explosives become unstable above
about 200◦C,24 this means that a nuclear warhead containing a small solid “pit”
of reactor-grade plutonium would either have to have a cooling system or have
a precooled pit inserted some hours before detonation, with the length of time
depending upon the heat capacity of the tamper and other design details.25 The
Nagasaki bomb and other early nuclear weapons had an “insertable” pit design
for safety and security reasons.26

The rate of heat emission from the transuranic mix is only about twice that
of reactor-grade plutonium. Technical approaches that would allow the use of
reactor-grade plutonium, such as cooling and insertable pits, therefore should
work almost as well with the transuranic mix. Thus, from a heat-management
point of view, the transuranic mix also should be considered as a potential
direct-use nuclear-weapon material.

Critical mass. It will be seen from Table 1 that the fast-critical mass of reactor-
grade plutonium is 1.35 times greater than that of weapon-grade plutonium and
that of the transuranic mix is 1.7 times greater. These differences are smaller
than the difference between the critical mass of weapon-grade plutonium and
weapon-grade (94% enriched) uranium, which has a bare critical mass of about
50 kg.27

RADIATION DOSE RATES FROM LANTHANIDE FISSION PRODUCTS

The radioactive lanthanide fission products that contribute significantly to the
activity of spent LWR fuel after a period of cooling of a few months or more are
listed in Table 2.28 Also shown are:
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Table 2: Important lanthanide-series fission products in LEU spent fuel at discharge
(53 MWd/kgHM).

Gamma
Heat Grams per kg γs/decay Dose rate

Isotope Halflife (Watts/gm) transuranics (av. EγMev)∗ (Sv/hr-kgHM at 1 m)

In pyroprocessing product
144Ce 0.78 y. 2.12 32.2 0.13 (0.12) 0.10
144Pr 17.3 min. 5.6 × 105 1.37 × 10−3 0.023 (1.2) 8.1

(from144Ce)
147Pm 2.6 y. 0.33 10.9 3 × 10−5 (0.12) 10−4

151Sm 90 y. 0.003 1.54 3 × 10−4 (0.022) 2 × 10−8

Not in pyroprocessing product
154Eu 8.8 y. 2.42 6.16 1.5 (0.74) 2.31
155Eu 4.7 y. 0.34 2.28 0.53 (0.094) 0.003
∗ NuDat 2: Decay radiation database version of 8/12/2004, op. cit.

� The grams of each isotope per kilogram of transuranics at the time of spent-
fuel discharge from the reactor,

� The most important gamma emissions that accompany the decay of each
lanthanide, and

� The contribution of each lanthanide to the radiation dose from a 1-kg sphere
of transuranic metal if the sphere were made immediately after spent fuel
discharge.

We have checked the dose rates from 144Ce and 144Pr by hand.29 Only the
doses from 144Pm, the short-lived decay product of 144Ce, and from 154Eu are
significant on the scale set by the IAEA’s 1 Sv/hr at 1 m self-protection threshold.

Advocates of pyroprocessing have pointed to the proliferation-resistance
benefits of not separating out the lanthanides from the transuranics. Py-
roprocessing does separate out europium, however,30 so the full burden of
maintaining a high radiation field falls on 144Pr and its parent radioisotope,
144Ce.

Unfortunately 144Ce has a relatively short halflife. As shown in Figure 1,
even if all the 144Ce follows the transuranics,31 the radiation level from the
144Ce in 1 kg of transuranic metal will have declined below the self-protection
threshold a little more than two years after spent-fuel discharge. Within five
years, it will be below 0.1 Sv/hr.

Therefore, the short-lived radiation barrier from 144Ce would be relevant
only for a fuel cycle involving separation and recycle of the transuranics in
spent fuel very soon after spent-fuel discharge. IFR advocates believe this would
be possible for a colocated IFR and pyroprocessing plant. A paper from Ar-
gonne National Lab on the proliferation-resistance of the IFR fuel cycle as-
sumes recycle back into the reactor 100 days after fuel has been discharged
from the reactor.32 Using that assumption, it calculates a radiation field of
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Figure 1: Effect of including 144Ce on gamma-radiation dose rate 1 m from a 1-kg sphere
of transuranics extracted from 53 Mwd/kgHM spent LEU fuel.

4 Sv/hr 1 m from 10 kg of “cathode product” (including approximately 2 kg of
transuranics) and 10 Sv/hr 1 m from an IFR fuel assembly containing 90 kg of
cathode product (approximately 20 kg of transuranics) produced from 100-day-
old spent fuel.33 When comparing to our results in Table 2, account also must
be taken of the fact that the ratio of 144Ce to transuranics would be an or-
der of magnitude lower for IFR spent fuel than for LWR fuel, reducing the
associated gamma-radiation field per kg of transuranic material in IFR fuel
correspondingly.34

Unfortunately, these proliferation-resistance benefits of pyroprocessing are
irrelevant to the problem of the already existing and growing U.S. inventory
of spent LWR fuel, which, on average, is already more than a decade since
discharge and therefore contains an insignificant quantity of 144Ce.
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CONCLUSIONS

The radiation doses from transuranics without the lanthanides are more
than three orders of magnitude lower than the IAEA’s threshold for self-
protection.

Inclusion of either of two lanthanide fission products, 144Ce and 154Eu, could
increase the dose rate above the self-protection threshold. However, 144Ce has
a half-life of only 0.8 years and has already decayed away in all but the most
recently discharged spent LWR fuel. 154Eu has a half-life of nine years but is
not recycled with the transuranics in the pyroprocessing fuel cycle. It there-
fore appears that keeping plutonium from aged LWR fuel mixed with other
transuranics and with lanthanide fission products other than 154Eu would not
make it significantly more self-protecting.

Reprocessing was originally developed to recover plutonium for nuclear
weapons from the uranium-metal fuel of plutonium-production reactors. It was
then used in Europe and Russia to separate plutonium from higher-burnup
oxide power-reactor fuel for startup cores for the plutonium breeder reactors
whose large-scale commercialization was originally anticipated in the 1990s.
Now, with the indefinite delay of the advent of breeder reactors, the pri-
mary rationale has become one of avoiding irreversibly emplacing long-lived
transuranic radioisotopes in geological repositories.

In the U.S., however, no irreversible decision on spent-fuel disposition is
planned for at least one hundred years. The legislation establishing a national
repository requires that it be:

designed and constructed to permit the retrieval of any spent nuclear fuel
placed [there] during an appropriate period of operation of the facility, for any
reason pertaining to the public health and safety, or the environment, or for the
purpose of permitting the recovery of the economically valuable contents of such
spent fuel.35

Current DOE plans are to have the period before repository closure last for
at least 100 years after emplacement begins.36

In this context, it is hard to see an urgent case for separating out transuran-
ics from U.S. spent fuel—especially given that the U.S. and other countries
already have to dispose of hundreds of tons of excess plutonium that they pre-
viously separated for civilian and weapons purposes.37
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