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Phosphate rocks are predominantly mined for fertilizer produc- Received 9 May 2017
tion. However, they also contain considerable amounts of accom- Accepted 4 October 2017

panying natural uranium that can exceed concentrations found
at commercial uranium mines. Extracting uranium from phos-
phate rocks during fertilizer production is a technically mature
process; it was used on an industrial scale in the United States and
elsewhere before decreasing uranium prices made this practice
unprofitable in the 1990s. Soon, technical improvements, poten-
tially rising uranium prices, and anticipated environmental regu-
lations may make uranium extraction from phosphates profitable
again in the United States and emerging phosphate rock mining
centers in Northern Africa and the Middle East. Extracting ura-
nium during phosphate fertilizer production is desirable in a way
that otherwise lost resources are conserved and fertilizers with
reduced radiotoxic heavy metal content are produced. Phosphate
rocks have also been subject to clandestine uranium acquisition.
In this work, the relevance of unconventional uranium resources
from phosphate rocks is reviewed. A brief overview of the extrac-
tion process, a list of the required materials, and a very simple esti-
mation of the amounts of uranium that could be extracted using
a container-sized pilot plant which can be integrated into exist-
ing fertilizer plantsis provided. Lastly, past known unreported ura-
nium extraction activities from phosphate rocks are discussed.

Introduction

The acquisition of plutonium or highly enriched uranium (HEU) is tradition-
ally understood as the hardest part of the nuclear explosive device production
process.! The plutonium route is not further discussed here. HEU is produced
through enrichment of natural uranium. This challenging process was traditionally
associated with relatively large intelligence signatures (e.g., large energy and space
requirements for gaseous diffusion and gas centrifuges), and is arguably still the
main barrier to nuclear weapons production capability. These large industrial
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facilities are an important observable indicator that an actor is pursuing nuclear
weapons development.?

In comparison, uranium acquisition attracts relatively little attention, e.g., ura-
nium ore concentrate (UOC) is not monitored by the Nuclear Suppliers Group
(NSG) or International Atomic Energy Agency (IAEA) safeguards.’ There is little
concern as most UOC sales are mostly to NSG members (although not necessarily
from NSG-states, e.g., Namibia and Niger are relevant uranium suppliers).* Never-
theless, undeclared or clandestine accumulation of uranium stocks may significantly
facilitate proliferation. An appropriate level of transparency of uranium production
by any mining process is therefore relevant to nonproliferation efforts.

All conventional uranium production (mining or extraction alike) should be
reported to IAEA under its comprehensive safeguards agreement (INFCIRC/153)
and additional protocol (INFCIRC/540). An increasing number of actors are con-
sidering uranium extraction from unconventional resources. Forcing states to report
uranium extraction from unconventional resources presents challenges to IAEA.
Some countries, for instance, do not report accompanying uranium as they fear
compromising the value of the primary ore, or they are simply not aware of byprod-
uct uranium extraction operations taking place as they are, due to their relatively
little economic importance sometimes not (directly) declared by mining companies.

Among these unconventional resources phosphate rocks are of prime importance
due to the relatively large concentration of accompanying uranium and the technical
maturity of the uranium extraction process. Phosphate rock production is expected
to increase from 223 million tons in 2015 to 255 million tons in 2019, while phos-
phate rock processing plants may triple in capacity by 2018.> Uranium extraction
plants can be relatively easy to integrate into existing phosphate rock processing
plants and may benefit from the available infrastructure. As a result of the global
abundance and the large global trade volumes of phosphate rocks, it is unlikely that
IAEA or any other organization will have the capacity to monitor global phosphate
rock trading and processing.

It has been argued though that since the number of countries proficient in ura-
nium enrichment or other technologies critical from the non-proliferation stand-
point has increased over time, additional measures, such as an introduction of non-
proliferation regulations to the UOC market and particularly uranium extraction
from unconventional resources, may be necessary.®

In this work the relevance of unconventional uranium resources from phosphate
rocks is reviewed. A brief overview of the extraction process that includes a list of
the required materials and a very simple estimation of the amounts of uranium that
could be extracted using a container-sized pilot plant which can be integrated into
existing fertilizer plants at different locations is provided. Lastly, past known unre-
ported uranium extraction activities from phosphate rocks are discussed.

Phosphate rocks—a relevant unconventional uranium source

The Nuclear Energy Department of the IAEA differentiates between conventional
and unconventional uranium sources.” Among the various unconventional sources
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mentioned (phosphate rocks, non-ferrous ores, carbonatite, black shale a,nd lignite)
uranium from phosphate rocks is of predominant importance. Other unconven-
tional sources (e.g., black shale and seawater) may become relevant at some point in
the future.® The predominance of uranium from phosphate rocks among the uncon-
ventional resources may be explained by:

e The relatively high average and local concentrations of uranium found in phos-

phate rocks;

e The large quantities of uranium found in phosphate rocks globally;

e The technical maturity of extracting uranium from phosphate rocks during fer-

tilizer production.

Extracting uranium from phosphate rocks is inexpensive when compared with
other unconventional sources, particularly uranium extraction from seawater. Fur-
thermore, otherwise lost uranium resources can be conserved and the amount of
radiotoxic elements in the final fertilizer products can be significantly reduced by
removing more than 90% of the accompanying uranium.’ In addition to uranium,
phosphate rocks contain several trace elements such as rare earth elements (REE)
that can be extracted and sold as well.'

Concentration of uranium in phosphate rocks

Phosphate rocks are naturally occurring mineral deposits which contain relatively
high concentrations of phosphate minerals.!! Uranium is an accompanying element
in phosphate rocks. There are two major sources of phosphate rocks: sedimentary
and igneous (magmatic) deposits.'? Typically, deposits are of a single type and typi-
cally uranium concentrations are reported to be considerably higher in sedimentary
deposits. About 80-90% of the world’s phosphate production in the last ten years is
estimated to derive from sedimentary sources.!* Igneous deposits provided about
10-20% of the world’s phosphate rock production during the last ten years with
small additional quantities from excavated biogenic resources, largely bird and bat
guano accumulations.!* Worldwide average uranium concentrations in phosphate
rocks range from 25-50 ppm with local deposits showing concentrations as high
as 600 ppm.'® In comparison, the average concentration of uranium in seawater is
as low as 0.003 ppm.'6 It is after concentration in loaded sorbents that relevant ura-
nium concentrations from seawater are available.!” The Nuclear Energy Department
of the IAEA recognizes ores with minimum concentrations of 300 ppm as uranium
resources.'® The World Nuclear Association (WNA) differentiates between (1) very
high-grade uranium ores (>200,000 ppm), (2) high-grade uranium ores (>20,000
ppm), (3) low-grade uranium ores (>1,000 ppm) and (4) very low-grade uranium
ores (>100 ppm)' as indicated in Table 1.

Average uranium concentrations in phosphate rock deposits in Algeria (Djebel
Kouif, 100 ppm), Angola (Cabinda, 260 ppm), Brazil (Araxa, 182 ppm and Catalao,
220 ppm), Burkina Faso (Kodjari, 125 ppm), Egypt (Hamrawen, 110 ppm, Safaga,
120 ppm, and West Mahamid, 100 ppm), Israel (Arad, 150 ppm), Mali (Tilemsi,
123 ppm), Morocco (undifferentiated, 130 ppm), Tanzania (Minjingu, 390 ppm),
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Table 1. Characterization of uranium ore (World Nuclear Association).

Concentration [ppm uranium]

Very high-grade uranium ore >200,000
High-grade uranium ore >20,000
Low-grade uranium ore >1,000
Very low-grade uranium ore >100

United Sates (Central Florida, 141 ppm and Idaho, 107 ppm) as reported by van
Kauwenbergh? are high enough to be labeled as “very low-grade uranium ores”
and exceed the concentration of a number of very low-grade commercial uranium
mines that are, for example, operated in Namibia.?!

Quantity of uranium in phosphate rocks

Overall phosphate rock reserves are concentrated in a few countries with deposits
in Morocco (including Western Sahara) accounting for nearly three quarters of all
material.”* Phosphate rock resources are subject to active scientific discussion due to
the importance of phosphate rocks for the world’s food security.?® Figure 1 provides
an overview of global phosphate rock production and phosphate rock reserves by
country in 2015 using data from the U.S. Geological Survey.*

Phosphate rock production by country in 2015 (thousand MT)
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Figure 1. Global phosphate rock production (bar chart) and phosphate rock reserves (pie chart) in
2015 (U.S. Geological Survey).
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The quantity of uranium in phosphate rocks is considerable. WNA reports that
in addition to the 5.9 million metric tons (MT) of known recoverable uranium
resources, 9-22 million MT may be found in phosphate rocks worldwide.?> Ulrich
et al. suggest similar amounts (5.7 million MT).?® Gabriel et al.?” estimate that
slightly more than 15% of uranium required for peaceful purposes worldwide could
come as a purified byproduct from phosphate fertilizer production and Kim et al.?®
turther estimate that as of 2017, 10% of uranium required for peaceful purposes in
the United States could be provided from the country’s phosphate fertilizer produc-
tion chain. The large quantities differentiate uranium from phosphate rocks from
other unconventional uranium resources such as uranium from black shales that
show similarly high uranium concentrations (20-500 ppm) but less significant over-
all quantities.?

Past commercial extraction of uranium from phosphate rocks

The first industrial attempts to recover uranium from phosphate rocks started in
Florida®® and to the mid-1990s about 20% of uranium mined in the United States
was a byproduct of phosphate rock processing.®! Past attempts to recover uranium
from wet phosphoric acid (WPA), an intermediate product in phosphate fertilizer
production, can be divided into three waves ranging from the early 1950s to the
early 1960s (first wave), the late 1970s to the mid-1990s (second wave) with the last
commercial plant closing operation in 1999, and a third wave that may be a result of
technically improved extraction techniques, rising uranium prices, and upcoming
environmental regulations.

During the first wave (1951-1962) 17,150 MT uranium were recovered from
phosphate rocks in the United States, mainly for defense purposes.®* Rising ura-
nium demand for commercial nuclear power and increasing prices in the 1970s led
to a second larger wave resulting in plants being constructed and operated in Bel-
gium, Canada, Iraq, Taiwan, and the United States.** It is estimated that some 20,000
MT uranium were recovered during this period. Other considerable uranium recov-
eries from phosphate rocks took place in the former Soviet Union. In Kazakhstan
for instance 40,000 MT uranium (from 1970s to 1990s) were recovered from marine
organic deposits (essentially concentrations of ancient fish bones with higher grades
of uranium).** Table 2 provides a brief overview of industrial plants that extracted
uranium for commercial purposes from WPA.**-36

Kim et al.*” estimated that uranium prices as high as $50/1b. U3Og would make
uranium extraction again profitable in the United States. This trend may be further
enhanced by improvements in recovery techniques such as in ion exchange recovery
and potential regulations for upper limits for uranium content in fertilizers.

Wet phosphoric acid production and uranium recovery

Two primary phosphate rock processing methods: WPA and thermal acid processes
can be differentiated. The WPA process is presently the most economical due to
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high energy intensity of thermal processing. Phosphate rocks are usually concen-
trated before leaching. Depending on the nature of the gangue material®® mixed with
the phosphate rocks, simple techniques such as crushing, grinding and/or screening
may be sufficient for extraction. In most cases, more advanced techniques such as
flotation or calcination are required.*® During WPA production the concentrated
ore is leached with hydrochloric acid (Equation 1), nitric acid (Equation 2) or sul-

furic acid (Equation 3).4°

Cajg (PO4)6F2 + 20HCI = 6H;PO, + lOCaC12 + 2HF (1)
Calo(PO4)6F2 + 20HNO3; = 6H3PO,4 4+ 10Ca (NO3) + 2HF (2)
Calo(PO4)6F2 —+ 10 (H2804 [ ] l’leo) — 6H3PO4 + IO(CaSO4 [ ] l’leo)S —+ 2HF
(3)

Presently, about three quarters of WPA is produced using sulfuric acid.*' Uranium
has traditionally been extracted from the pre-concentrated phosphoric acid as part
of the WPA purification. Figure 2 provides a brief overview of the process and indi-
cates at which point uranium can be extracted and further processed to yellow cake
if desired. The advantage for commercial uranium extractors and potential prolifer-
ators alike is that uranium extraction units can be added to existing infrastructure.
Since phosphoric acid is a liquid, only piping that results in little to no visible foot-
print is required.

It is worth noting that uranium extraction from WPA is today the most econom-
ical way to extract byproduct uranium. Less economic methods include extraction
directly from phosphate rock,*? merchant grade WPA or even final fertilizer
products.

Mined phosphate rocks are concentrated in a beneficiation step to increase the
phosphorous content. Concentrated phosphate rocks are digested in acid (most of
the time sulfuric acid, H,SOy, is used) to produce phosphoric acid. Besides phos-
phoric acid, relatively large amounts of phosphogypsum (roughly 5 MT phosph-
ogypsum per 1 MT phosphoric acid) accrue during the process. Phosphogypsum
shows low levels of radioactivity that precludes its usage as a construction mate-
rial.** In most cases phosphogypsum is currently stacked next to the processing
plants. Most uranium (80-90%) ends up in the phosphoric acid stream. How much
uranium is transferred to the WPA and phosphogypsum is ultimately dependent on
the process conditions and feed material.**

Solvent extraction methods were the predominant methods of choice for
extracting uranium during phosphoric acid purification. Solvent extraction is

Phosphate - - . . . . Wet . Fertilizer
*» Mining |+ Beneficiation + Digestion |+ Filtration |» phosphoric | z
rock production

% acid
L i
Phospho-
gypsum

Sulfuric acid *»  Yellow cake

Figure 2. Brief overview of the WPA process with uranium extraction.
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accomplished with some combination of di (2-ethylhexyl) phosphoric acid (DEPA,
DEHPA or D2EHPA) and trioctyl phosphine oxide (TOPO), octyl phenyl acid
phosphate (OPAP), octyl pyro phosphoric acid (OPPA) or tributyl phosphate
(TBP). Beltrami et al.,* Bunus*® and Singh et al.*’ provide comprehensive reviews
of the different extraction processes used. Among these options the DEPA-TOPO
or ORNL process developed at Oak Ridge National Laboratory was the most widely
used extraction process.*® The process was predominantly used for industrial
purposes due to its stability, efficiency and selectivity.*’

Materials required for the DEPA-TOPO process

The basic DEPA-TOPO process requires little material input. Hurst et al.>® provided
a list of materials required for the DEPA-TOPO process for an economic assessment.
The quantities needed to extract 1 g U3Og as well as the quantities needed to extract
a “significant quantity” (10 MT) natural uranium are provided in Table 3. None of
the listed materials is considered a dual-use item by the Wassenaar Arrangement,”!
or the Australia Group Export Control list.>?

Possibilities of small scale uranium extraction

In addition to the commercial plant operations listed in Table 3 several pilot plants
using different extraction techniques were operated around the globe. Urtek LLC,
for example, developed an alternative technique, based on ion exchange, to com-
monly solvent extraction processes such as the DEPA-TOPO process that promises
lower costs and higher recovery rates and is designed to be integrated into existing
phosphoric acid facilities. Figure 3 shows a pilot plant fitting in two 40-foot shipping
containers that successfully proved the viability of this technology.>® The pilot plant
is designed in accordance with US-NRC 10 CFR Part 40 and is operated such that
no more than 70 kg source material are extracted each year.

Given the relatively small footprint of such a plant, estimating the uranium
extraction capability is worthwhile. Equation 4 provides a simple approach that is
dependent on the given (0.41 /s or 0.66 gpm) phosphoric acid volume flow.

Viwpa X ou X Dy x t = my (4)

Table 3. Amount of material required to extract a significant quantity of uranium (IAEA).

Material required to
extract a significant

Material Use Quantity [g/g U30g] quantity of uranium [MT]
Sodium chlorate NaClO3; Liquor oxidation 1.80 21.22
(Ist and 2nd cycle)

Ammonia NH3 Stripping 0.90 10.61
Carbon dioxide CO, Stripping 0.80 9.43
Iron metal Fe Stripping 0.50 5.90
Di-(2-ethylhexyl) DEPA Organic Extraction <0.01 <0.12
phosphoric acid

Tri-n-octylphosphine TOPO Organic Extraction <0.01 <0.12
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Figure 3. Urtek LLC uranium extraction pilot plant (Urtek LLC).

Vivpa = Phosphoric acid volume flow [1/s]

¢y = Uranium content of the phosphoric acid [g/1]
Dy = Fraction of the uranium that is extracted

t = Extraction time [s]

my = Mass of the extracted uranium [g]

Assuming nearly continuous operation (with an availability factor of 0.90) the
amount of uranium that could be extracted from phosphoric acid with relatively
high uranium content (0.165 g/1) like Florida®* and a recovery rate of 0.95 amounts
to approximately 1,825 kg/year. Glaser™ estimated that 280 kg natural uranium
are required to produce 1 kg weapon grade HEU (90% uranium-235). A review of
Iraqg’s nuclear weapons program revealed a design that would require about 16 kg of
90% enriched uranium. This would require 4,480 kg of natural uranium feed using
Glaser’s calculations.
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Table 4. Wet phosphoric acid volume flow required at different locations to extract a significant quan-
tity of uranium in a year.

Location oy [9/1] V,p0,l/s]
United States, FL 0.165 225
Israel 0.140 2.65
Morocco 0.119 312
Iran 0.083 4.47
Jordan 0.071 522
Taiwan 0.067 5.53
Syria 0.060 6.18
Egypt 0.040 927
Tunisia 0.037 10.02

The TAEA defines a significant quantity to be 25 kg HEU or 10 MT natural
uranium.>® Table 4 provides a brief overview of the required annual phospho-
ric acid flow that would be sufficient to extract a significant quantity of natural
uranium with phosphoric acid used at different locations (again with Dy= 0.95
and 0.90 plant availability). Locations were chosen based on open source data
and provide a brief overview of the different uranium concentrations at different
deposits.””

Commercial WPA plants at which uranium was extracted had much higher
throughputs than the values provided in Table 4. The IMC plant in New Wales,
Florida, for instance operated with a feed (Vivpa) ranging from 51-83 1/s produc-
ing some 245-269 MT uranium or 24-26 significant quantities per year.”®

Known unreported uranium extraction from domestic phosphate rocks

Uranium mining produces more uranium than phosphate processing plants; divert-
ing material during traditional and in-situ leach uranium mining operations without
raising attention of IAEA safeguards, is therefore easier. However, since phosphoric
acid can be diverted to a side-stream, stripped of uranium, and returned to the fer-
tilizer stream there may be fewer indicators of uranium extraction. The extraction
route may thus be attractive for clandestine uranium accumulation if only phosphate
rocks are available and primary uranium ores are not. In addition, even reported
uranium byproduct extraction is often not considered a uranium mining operation
by national regulations. Uranium extraction from unconventional resources should
be reported to IAEA under its comprehensive safeguards agreement (INFCIRC/153)
and additional protocol (INFCIRC/540) but has often been ignored or overlooked
in practice.

Uranium from domestic phosphate rock sources contributed to nuclear programs
in Israel®® and the United States.’* In 1949 Science Corps C, a special unit of the
Israel Defense Forces started a two-year geological survey searching for uranium
in the Negev desert. Uranium was found in phosphate rocks and Science Corps C
eventually perfected the extraction process by 1953.! It is believed that Israel is still
extracting some 10 MT®* (1 Significant Quantity) or more uranium during domestic
phosphate rock processing annually.®®
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Another example is the Al Qaim plant in Iraq were some 109 MT or nearly 11
Significant Quantities of uranium were extracted without reporting this to IAEA®*
before the facility was destroyed during the First Gulf War. The phosphate rock
deposits in western Iraq contain some 40-80 ppm uranium.%> Phosphate rocks were
mined in Akashat and transported 150 km to the Al Qaim processing facility by
train. The Al Qaim facility started operation in 1984 and played an important role
for the country’s fertilizer supply.%® A facility to extract uranium from WPA was
erected within two years from 1982 to 1984. It was designed to extract 103 MT ura-
nium/year if operating 317 days/year, processing some 42 1 WPA/s with 0.075 g ura-
nium/l and a recovery rate of 0.93. As part of later inspections Iraq declared that
the plant met less than 20% of its design capacity during its six years (1984-90) of
operation. The poor plant performance was due to lower than anticipated uranium
concentrations (approximately 60% of the design value), a drastically reduced flow
rate (approximately 50% of the design value), a reduced recovery rate (approximately
0.78) and reduced overall plant availability (214 days/year on average). Though the
plant did not meet the design specifications its activity was initially not reported to
IAEA safeguards.®”

Known unreported uranium extraction from imported phosphate rocks

In addition to uranium extraction from domestic phosphate rocks, several countries
import phosphate rocks for phosphate fertilizer production and extracted accom-
panied uranium from these imported resources. Belgium for instance reported the
production of some 40 MT uranium annually at the Prayon Plant in Engis (near
Liége) from Moroccan (Khouribga) phosphate rock from 1980 to 1998. Interest
remains in uranium from phosphate rock rich regions as indicated by contracts
between Areva (France) and OCP (Morocco).®® For countries without consid-
erable phosphate rock and uranium resources, such as India and Pakistan,®® for
whom buying uranium on the international markets is a struggle’’; uranium from
phosphate rocks may be of particular interest. As further evidence, Iran reportedly
attempted to circumvent sanctions on the direct import of uranium ore by purchas-
ing ores, including phosphate rocks, with a relatively high content of accompanying
uranium.”!

Phosphate rocks may be imported from multiple sources and be blended at a sin-
gle facility. Material flows are, for instance, available for a plant in the Philippines
that imports phosphate rocks from different sources and blends them prior to pro-
cessing (without uranium extraction).”?
stand whether small or medium amounts of uranium were extracted given uranium
concentrations in the phosphate rocks and final fertilizer products.

The Republic of Korea (ROK) considered developing nuclear weapons in the late
1960s due to worries about U.S. alliance guarantees against threats from the Demo-
cratic People’s Republic of Korea (DPRK). ROK first decided to pursue plutonium
production using a reprocessing facility, a research reactor and a heavy water reac-

Blending makes it challenging to under-

tor. Due to controls on dual-use technology because of India’s 1974 nuclear test,
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ROK’s efforts to gain weapons grade plutonium were uncovered. Though never of
significance for a weapons program, ROK’s nuclear activities continued in the early
1980s by selectively importing phosphate rock with high uranium content, so that
uranium could be extracted and used for clandestine enrichment experiments.”?

Conclusion

Acquiring natural uranium is the first step to producing nuclear explosives. In addi-
tion to conventional sources, phosphate rocks are a promising source of unconven-
tional uranium. Due to the global abundance of phosphate rocks as well as its large
trade volumes for fertilizer production, relevant for global food security, it is unlikely
that JAEA or any other organization will have the capacity to monitor uranium
extraction from domestic or imported phosphate rocks. Additionally, this could be
considered a poor use of IAEA resources. Knowledge that significant amounts of
uranium may be transferred to states that have few uranium resources but possi-
ble nuclear weapon programs is useful though. Guidelines for the declaration of
mined uranium that include unconventional uranium from extraction activities are
in place. We urge IAEA as well as all its Member States to make use of them, close
potential loopholes and thus enable resource conversation and the production of
cleaner fertilizer globally.
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