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ABSTRACT
The United States, Russia, and China are developing an array
of hypersonic weapons—maneuverable vehicles that carry
warheads through the atmosphere at more than five times
the speed of sound. Proponents claim that these weapons
outperform existing missiles in terms of delivery time and eva-
sion of early warning systems. Here, we report computational
modeling of hypersonic boost-glide missile flight which shows
that these weapons travel intercontinental distances more
slowly than comparable ballistic missiles flying depressed tra-
jectories, and that they remain visible to existing space-based
sensors for the majority of flight. Fundamental physical limita-
tions imposed by low-altitude atmospheric flight render
hypersonic missiles an evolutionary—not revolutionary—
development relative to established ballistic missile technolo-
gies. Misperceptions of hypersonic weapon performance have
arisen from social processes by which the organizations devel-
oping these weapons construct erroneous technical facts
favoring continued investment. The modeling reported here
provides a basis for rigorous, quantitative analysis of hyper-
sonic weapon performance.

Introduction

Hypersonic weapons comprise an emerging class of missile technologies—
maneuverable vehicles that carry warheads through the atmosphere at more
than five times the speed of sound.1 Their flight characteristics are distinct
from those of typical ballistic missiles, which spend most of flight above
the atmosphere and are capable of only limited maneuverability, and from
those of subsonic or supersonic cruise missiles, which travel through the
atmosphere but fly more slowly.
The United States, China, and Russia are currently racing to develop

these weapons, and each plans to field a wide array of hypersonic systems
in the coming decades.2 The most recent U.S. defense budget, for example,

CONTACT Cameron L. Tracy ctracy@ucsusa.org Global Security Program, Union of Concerned Scientists, 2
Brattle, Square, Cambridge, MA 02138, USA.
� 2021 Taylor & Francis Group, LLC

SCIENCE & GLOBAL SECURITY
2020, VOL. 28, NO. 3, 135–170
https://doi.org/10.1080/08929882.2020.1864945

http://crossmark.crossref.org/dialog/?doi=10.1080/08929882.2020.1864945&domain=pdf&date_stamp=2021-02-07
http://www.tandfonline.com


dedicates $3.2 billion to hypersonic weapon programs, representing about
3% of the total defense research and development budget.3 China is also
investing heavily in both hypersonic development infrastructure and
weapon systems, reportedly outpacing the United States in testing of these
technologies.4 Russia, reportedly the first nation to deploy a hypersonic
missile, characterizes these weapons as a centerpiece of its security strategy
and has extensively tested at least three distinct hypersonic systems.5

This nascent hypersonic arms race is premised on claims that the sup-
posedly unprecedented capabilities of these weapons portend a revolution
in missile warfare—claims that pervade the news media, governmental
statements, and the scholarly literature. Hypersonic missiles are commonly
depicted as a “game changer.”6 With allegedly “unmatched speed,” these
weapons are said to “hit over-the-horizon targets in a fraction of the time
it would take existing ballistic or cruise missiles.”7 In short, proponents
assert that “developments in hypersonic propulsion will revolutionize war-
fare by providing the ability to strike targets more quickly.”8 This claimed
speed advantage is ostensibly accompanied by near-immunity to detection,
rendering hypersonic weapons “nearly invisible” to existing early warning
systems.9 Together, these capabilities will purportedly “greatly compress
decision and response times” in a hypersonic strike, leaving those targeted
with “insufficient time… to confidently identify and confirm the nature of
an incoming attack, let alone to decide how to respond.”10

Despite these claims, the precise capabilities of hypersonic missiles
remain uncertain and controversial. In contrast to the common depiction
of these weapons as a revolution in missile warfare, several recent analyses
suggest they may offer minimal advantage over existing missile technolo-
gies.11 Detailed, quantitative, open-source technical assessment is necessary
to clarify the capabilities of this emerging technology and its probable
effects on international security.
This article reports the results of computational modeling of hypersonic

boost-glide vehicle flight. Our analysis indicates that a hypersonic missile
will travel intercontinental distances more slowly than a comparable ballis-
tic missile flying a depressed trajectory. Furthermore, hypersonic missiles
will remain visible to existing space-based early warning systems for the
majority of flight. Ultimately, these results show the performance and stra-
tegic implications of hypersonic weapons to be broadly comparable to those
of established ballistic missile technologies. While hypersonic weapons
exhibit some modest advantages in terms of, for example, maneuverability,
fundamental physical limitations imposed by low-altitude atmospheric
flight render these weapons at best an evolutionary—not revolutionary—
advancement. The persistence of misperceptions regarding hypersonic
weapon performance has resulted from social processes by which erroneous
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technical facts have been socially constructed and promulgated by organiza-
tions developing these weapons.
The first section of this article presents a mathematical model of the

flight of a notional hypersonic vehicle. Computational results, and their
implications for hypersonic weapon performance, are presented next. The
last section examines the social origins of misperceptions regarding hyper-
sonic weapon capabilities. The article concludes with discussion of further
questions regarding hypersonic weapon capabilities which the modeling
approach reported here might address.

Computational modeling of hypersonic flight

Hypersonic weapons can be sorted into two distinct categories: cruise mis-
siles and boost-glide vehicles.12 The former operate much like typical sub-
sonic and supersonic cruise missiles—using air-breathing engines to power
themselves through the atmosphere—but fly at higher speeds. Yet hyper-
sonic cruise missiles are unlikely to match the speeds or ranges achievable
by boost-glide vehicles, which are accelerated to extremely high velocities
on rocket boosters similar to those used to launch ballistic missiles. They
then proceed to glide, unpowered, through the upper atmosphere until
reaching their target. Because boost-glide systems represent the forefront of
hypersonic missile performance in terms of speed and range, and because
they are the focus of most current development activity, our analysis
focuses on this class of missile.
Typical flight of a hypersonic boost-glide weapon can be divided into six

stages: boost, ballistic, reentry, pull-up, glide, and terminal phases.13 In the
boost phase, a rocket booster accelerates the missile carrying the hypersonic
vehicle until the booster exhausts its fuel, at which point it detaches from
the glide vehicle and falls back to Earth. In the ballistic phase, the vehicle
travels above the atmosphere on a ballistic trajectory under only the influ-
ence of gravity. Both of these phases are comparable to a ballistic missile
launch. Hypersonic trajectories diverge from those of ballistic missiles in
the reentry and pull-up phases. Here, the vehicle pierces the upper atmos-
phere, then slows its descent to enter a stable glide trajectory. In the glide
phase, the vehicle generates aerodynamic lift to sustain near-level flight.
Finally, in the terminal phase, the glider dives toward its target.
We model the boost and ballistic phases using standard equations of

motion for ballistic missile flight (Appendix).14 The complex dynamics of
the pull-up phase, which are difficult to accurately simulate with the avail-
able data on glide vehicle parameters, are treated analytically using a simple
mathematical approach reported by Acton.15 We have developed a new
computational model to simulate in detail the glide and terminal phases,
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which constitute the majority of a typical long-range hypersonic
flight trajectory.
The notional glide vehicle modeled here is based on the Hypersonic

Technology Vehicle 2 (HTV-2), an experimental glider jointly developed
and tested by the U.S. Air Force and the Defense Advanced Research
Projects Agency (DARPA).16 This system is commonly considered a proto-
typical intercontinental-range hypersonic glide vehicle. Several recent analy-
ses of its flight characteristics have been published in the open literature,
providing useful data for modeling.17 We assume a roughly triangular pyr-
amidal geometry based on that reported by Niu et al., as shown in
Figure 1.18 Based on prior analysis of HTV-2 test flights, we assume a
glider mass of m¼ 1,000 kg, a constant lift-to-drag ratio of L/D¼ 2.6, and a
ballistic coefficient of b ¼ m/(CdA) ¼ 13,000 kg/m2, where Cd is the drag
coefficient and A is the effective glider cross-sectional area.19 These aero-
dynamic parameters are in good agreement with those reported elsewhere
for wedge-shaped hypersonic gliders.20

Flight trajectory
We model atmospheric flight in the glide and terminal phases over a spher-
ical, non-rotating Earth using the three-dimensional coordinate system
illustrated in Figure 2. Four forces govern flight trajectories in this model:
gravity, lift, drag, and an apparent centrifugal force. The influence of these
forces is expressed in six equations of motion describing velocity (v), flight
angles measured relative to the local horizontal (c) and azimuthally from
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Figure 1. The HTV-2 glider geometry used in this analysis. Because we obtain aerodynamic
parameters (ballistic coefficient and lift-to-drag ratio) from analysis of flight test data, our trajec-
tory results are insensitive to the assumed vehicle geometry. Calculated surface heating and
infrared light emission, however, do depend on this geometry.
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the down-range direction (j), down-range angle over Earth (W), cross-
range angle over Earth (X), and altitude (h), all as a function of time:

dv
dt
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dt
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�
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where Cd is the vehicle’s drag coefficient, A is its effective cross-sectional
area, m is its mass, q is the atmospheric density, g is the acceleration due
to gravity, re is Earth’s radius, L/D is the vehicle’s lift-to-drag ratio, and r
is the vehicle’s roll angle.21 We calculate atmospheric density using the
1976U.S. Standard Atmosphere. Down-range and cross-range distances,
measured over Earth’s surface, are given by Wre and Xre, respectively.
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Figure 2. The coordinate system used in the hypersonic flight model, shown from both side
(left) and overhead (right) perspectives. Six trajectory variables are modeled: velocity (v), flight
angles relative to the local horizontal (c) and measured azimuthally from the down-range direc-
tion (j), down-range angle over Earth (W), cross-range angle over Earth (X), and altitude (h).
Down-range and cross-range distances, measured over Earth’s surface, are given by Wre and
Xre, respectively.
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We simulate flight beginning with a velocity vector oriented horizontal
to Earth’s surface. We assume an initial equilibrium altitude at which
vehicle weight is equal to the sum of the lift generated by the vehicle and
the apparent centrifugal force arising from its flight over a spherical Earth,
as given by:

L
�
D

� �
qv2g

2b
þ v2

re
�g ¼ 0 (7)

We calculate the glide trajectory by integrating the equations of motion
(Equations (1)–(6)) over time using a second-order Runge-Kutta (mid-
point) method. Maneuvering is simulated via variation of the glide vehicle
roll angle; for nonzero angles a portion of the lift force acts in the horizon-
tal direction, perpendicular to the vehicle’s velocity direction.
In the terminal phase we model an inverted dive maneuver in which the

glider turns upside down (corresponding to a roll angle of r¼ 180�), such
that the lift force is oriented toward the ground. This yields a faster, more
efficient traversal of the dense lower atmosphere.22 An inverted dive was
reportedly used in flight tests of the HTV-2.23

Aerothermal heating
As a glider traverses dense atmosphere at hypersonic speeds, shock waves
form in the nearby air. Much of the kinetic energy the glider loses as it is
slowed by atmospheric drag is transferred to this surrounding air, yielding
intense aerothermal heating. A portion of this heat is deposited to the
vehicle, producing extreme temperatures on its outer surfaces.
To model this heating, we consider the case of turbulent gas flow over a

non-ablative, catalytic glider surface. We calculate heat transfer to this sur-
face using phenomenological equations reported by Tauber et al. for heat
transfer in hypersonic flows.24 At the stagnation point (the tip of the glider
leading edge), the heat flux to the vehicle surface is approximated as:

dq
dt

� �
SP

¼ 1:83� 10�4ffiffiffiffi
rn

p 1� hw
h0

� �
q0:5v3 (8)

where dq/dt is the heat flux in J/m2s, rn is the radius of the glider’s leading
edge in m (0.034m for the glider geometry shown in Figure 1), hw is the
vehicle wall enthalpy per unit mass, h0 is the stagnation enthalpy per unit
mass, q is the atmospheric density in kg/m3, and v is the vehicle velocity
relative to air in m/s. The stagnation enthalpy is approximated as h0 ¼ v2/2
þ (2.3� 105 J/kg), and the wall enthalpy as hw ¼ 1,000Tw J/kg, where Tw

is the wall temperature in K.25
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We calculate heating of the remainder of the vehicle surface by approxi-
mating it as a triangular pyramid with four sides (two on the upper surface,
one on the lower, and the base of the pyramid at the rear of the glider) ori-
ented at different angles relative to the air flow direction. This allows for
the use of phenomenological equations, again obtained from Tauber et al.,
for heat transfer to flat plates in turbulent hypersonic flow. When
v> 4 km/s:

dq
dt

� �
FP

¼ 2:2� 10�5 coshð Þ2:08 sinhð Þ1:6
x0:2

 !
1� 1:11hw

h0

� �
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and when v� 4 km/s:
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 !
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� �0:25
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(10)

where h is the angle between the vehicle surface and the freestream flow, x
is the distance along the vehicle surface in meters, and Tw is the tempera-
ture of the vehicle wall in K. This approach shows good agreement with
the results of computational fluid dynamics calculations.26

As heat flows from the surrounding gas to the surface of a hypersonic
vehicle, that surface simultaneously sheds heat through thermal radiation.
Assuming a non-ablative aeroshell with a perfectly insulated interior and
neglecting thermal conduction along the shell, a glider in steady-state flight
will achieve thermal equilibrium at the radiative-adiabatic limit.27 At this
limit, the heat flux from the gas to the vehicle is equal to the heat flux radi-
ated by its surface, as given by the Stefan-Boltzmann law:

dq
dt

� �
rad

¼ erTw
4 (11)

where e is the surface emissivity and r is the Stefan–Boltzmann constant.28

We take the emissivity of the HTV-2’s carbon aeroshell to be e¼ 0.85.29

Setting Equations (8), (9), or (10) equal to Equation (11) yields Tw as a
function of position on the surface of the vehicle.

Thermal radiation in the infrared spectrum
The surface of a hypersonic glide vehicle typically reaches temperatures of
thousands of Kelvin during glide, producing substantial thermal radiation
across the infrared (IR) spectrum.30 When sufficiently intense, this IR sig-
nature can be detected by space-based IR sensors of the sort that the
United States and Russia use in their missile early warning systems.31
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To quantify this IR emission, we calculate the spectral radiance L (radi-
ant flux per unit solid angle per unit projected area per unit frequency) of
a glider using Planck’s law:

L k,Twð Þ ¼ 2ehc2

k5

� �
1

e
hc

kkBT � 1

� �
(12)

where k is the wavelength of light, h is the Planck constant, c is the speed
of light, and kB is the Boltzmann constant.32 We then double integrate
Equation (12) over the wavelength band of interest and the observed area
of the glider surface, yielding the total observed radiant intensity (radiant
flux per unit solid angle) of the vehicle. The results reported here assume
an observer situated directly overhead; alternate viewing angles would
increase or decrease the observed intensity in proportion to the corre-
sponding change in observed area. Atmospheric attenuation has a minor
effect on IR transmission to satellites from typical hypersonic flight alti-
tudes (tens of kilometers), and is therefore neglected.33

Computational results

Flight trajectory
The flight of a hypersonic vehicle in the glide and terminal phases is gov-
erned, in large part, by atmospheric drag. While ballistic missiles spend the
majority of their flight in outer space where air density is negligible, hyper-
sonic glide takes place within the atmosphere where air density is suffi-
ciently high to generate the lift necessary for sustained flight. As expressed
in a glider’s L/D parameter, the generation of lift is unavoidably accompa-
nied by the proportional generation of drag. This drag reduces a glider’s
velocity, which in turn limits its achievable range and maneuver-
ing capability.
Figure 3 shows the calculated glide phase velocity of the modeled hyper-

sonic vehicle as a function of glide range for flight straight down-range
with no cross-range maneuvering. Data are presented for a range of initial
glide velocities, which will vary with the booster rocket and the boost, reen-
try, and pull-up trajectories chosen for a particular hypersonic missile
launch. Based on Acton’s analysis of HTV-2 flight tests, initial glide veloc-
ities of roughly 6 km/s can be considered typical for intercontinental-range
systems.34 In all cases, drag rapidly slows the glider. For example, the vel-
ocity of a missile beginning glide at v¼ 6 km/s is halved after 6,000 km
of glide.
As a glider’s velocity decreases due to drag, its equilibrium flight altitude

also decreases, assuming a constant value of L/D and a constant relation-
ship between v and the generated lift (Equation (7)).35 Thus, as it slows, a
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glider must drop to lower altitudes where denser air can provide sufficient
lift to keep it aloft. Continuous hypersonic flight is therefore constrained to
a relatively narrow altitude-velocity corridor.36 Figure 4 shows calculated
glide altitudes as a function of glide range under the same flight conditions
considered in Figure 3.
These results show good agreement with the prior literature. For

example, Acton estimated an achievable range of �7,500 km for an HTV-2
with an initial glide speed of 6.1 km/s and initial glide altitude of �50 km.37

For these conditions, our model predicts a similar maximum range
of 7,630 km.
Drag effects on glide speed and altitude limit the achievable hypersonic

missile delivery times. Figure 5 displays the calculated glide time necessary
for the modeled vehicle to reach a certain glide range. At long ranges, such
as those associated with intercontinental strikes, the drag penalty on deliv-
ery time can be substantial.
While the above analysis concerns straight flight in the down-range dir-

ection, drag also limits cross-range maneuverability. Figure 6 shows the cal-
culated flight paths of a glider maneuvering in the cross-range direction
using a variety of vehicle roll angles. The ends of these flight paths approxi-
mately trace one-half of the area threatened by a missile initially gliding in
the down-range direction. While substantial cross-range maneuvering is
possible, it entails a reduction in the total flight path length. This is because
a glider must roll in order to turn, redirecting a portion of the lift force
toward the cross-range direction. The corresponding reduction in the lift
force acting counter to gravity results in a faster loss of altitude and, there-
fore, velocity.38
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Figure 3. Hypersonic vehicle speed as a function of glide range for various initial glide speeds,
illustrating how atmospheric drag slows the vehicle throughout the glide phase.
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Comparison with ballistic missiles
The strategic implications of hypersonic weaponry depend on its perform-
ance relative to that of ballistic missiles, which currently represent the
state-of-the-art in fast, long-range warhead delivery.39 Long-range ballistic
missiles reach velocities comparable to those of hypersonic boost-glide sys-
tems, since they are launched on similar or identical rocket boosters.
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Figure 4. Hypersonic vehicle altitude as a function of glide range for various initial speeds. As
drag slows the vehicle, the lift it generates (at a constant angle of attack) decreases. The glider
therefore drops to lower altitude, at which increased atmospheric density yields a greater lift
force for the same velocity. Minor oscillations about the equilibrium flight altitude, called phu-
goid motion, result from the dynamics of this process. These could be damped by active con-
trol of the vehicle.

0 2000 4000 6000 8000 10000 12000 14000
0

5

10

15

20

25

30

35

40

45

50

55

G
lid

e 
tim

e 
(m

in
)

Glide range (km)

7 km
/s

6.5
km

/s

6
km

/s

5.
5

km
/s

v
=

5
km

/s

0

7 km/s, no drag

Figure 5. Glide time as a function of glide range for various initial speeds. The gray dashed
line corresponds to an initial speed of 7 km/s in the absence of atmospheric drag. Curvature of
the solid lines results from the effects of atmospheric drag.

144 C. L. TRACY AND D. WRIGHT



Unlike gliders, they then spend most of their flight high above the atmos-
phere where they are not subjected to drag forces. However, this high, arc-
ing flight increases the flight path length necessary to reach a given range,
relative to the low-altitude flight paths of hypersonic gliders.
To determine the relative capabilities of hypersonic and ballistic missiles

we modeled intercontinental-range flight of both missile types, comparing
their flight times and reentry speeds.40 To facilitate comparison, identical
Minotaur IV booster rockets were modeled in both cases. This three-stage,
solid-fueled modification of the Peacekeeper intercontinental ballistic mis-
sile (ICBM) was used in flight testing of the HTV-2 and has been consid-
ered for future use in deployed U.S. hypersonic weapons.41 Booster
parameters were obtained from prior analysis by Wright.42

For the hypersonic case, we modeled a boost phase trajectory based on
that used in HTV-2 flight testing.43 For the reentry and pull-up phases, we
used Acton’s results from analysis of HTV-2 flight tests.44 Under these
assumptions, the hypersonic vehicle begins its pull-up phase, after reenter-
ing the atmosphere, at a speed of 7.1 km/s. It subsequently begins glide
3,100 km down-range from its launch point, 10.1minutes after launch, at
an altitude of 49 km and a speed of 6.1 km/s.
For the ballistic case, we modeled two distinct trajectories.45 The first is

a typical minimum energy trajectory (MET), which is the most energy-effi-
cient trajectory for a given range. It sends the warhead arcing over
1,000 km above Earth before it falls to its target. For this trajectory, the
rocket booster burn time was varied to achieve the desired missile range.
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Figure 6. Flight trajectories of vehicles beginning glide with v¼ 6 km/s and roll angles varying
in 5� increments from 0 to 70�. To maximize cross-range travel, the roll angle is reset to 0�

once the glider is traveling directly cross-range. The ends of these flight paths trace one half of
the approximate area threatened by a missile at the start of glide.
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The second is a depressed trajectory (DT), so named because the missile
turns sharply toward the down-range direction during the boost phase,
yielding a small angle with respect to the local horizontal at the end of
boost and, consequently, a much lower apogee. This trajectory reduces the
missile’s total flight path length necessary to reach a given range, compared
with a minimum energy trajectory, resulting in shorter delivery times. The
depressed trajectory calculation assumes a boost phase turn similar to, but
less severe than, that used in HTV-2 flight testing.46 The flight angle at
booster burn-out was varied to achieve the desired missile range. To facili-
tate direct comparison with the hypersonic case, we assume a ballistic mis-
sile reentry vehicle mass of 1,000 kg (equal to the HTV-2 mass used in this
modeling) so that the two systems exhibit essentially the same speed at
booster burn-out.47

Figure 7 shows the resulting trajectories for hypersonic and ballistic mis-
siles delivered to targets 8,100 km away from the launch point (correspond-
ing to 5,000 km glide, in the hypersonic case). Figure 8 shows the total
warhead delivery time, from launch to impact, for each missile as a func-
tion of range.
These results show that hypersonic weapons cannot match the short

delivery times of ballistic missiles flying on depressed trajectories, although
they exhibit a modest delivery time advantage over ballistic missiles flying
minimum energy trajectories. In short, hypersonic missiles are slower than
ballistic missiles over intercontinental ranges. Claims that the advent of
hypersonic weaponry will reduce the time necessary for warhead delivery
between, for example, the United States, Russia, and China, are false.
Currently deployed long-range ballistic missiles are not designed to man-

euver during reentry, either to increase accuracy or evade defenses.
However, the United States has developed and tested several maneuvering
reentry vehicles (MaRVs), which could be deployed on existing ballistic
missiles.48 Use of a lifting reentry body on a ballistic missile to enable
maneuvering in the terminal phase, as the hypersonic glider does, would
reduce delivery times slightly. For example, we find that a lifting reentry
vehicle with L/D¼ 1, which is achievable using a simple biconic geometry,
would reduce the depressed trajectory delivery time by approximately one-
quarter to one-half of a minute, depending on range.49

Flight speed in the terminal phase influences the vulnerability of a mis-
sile to interception by defensive systems. Figure 9 compares vehicle veloc-
ities as a function of altitude shortly before impact at two total ranges:
6,100 km and 8,600 km (corresponding to 3,000 km and 5,500 km glide in
the hypersonic case).50

The hypersonic vehicle, because it has been slowed by drag throughout
its glide phase, begins the terminal phase at a lower velocity than either
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ballistic missile. However, it maintains much of its speed throughout this
phase via a highly efficient inverted dive maneuver, which puts it on a
steep trajectory through the dense lower atmosphere (Figure 7(c)). In the
ballistic minimum energy trajectory, the reentry vehicle approaches its tar-
get at a similarly steep angle and, due to its higher velocity at the start of
the terminal phase, travels faster than the hypersonic glider for most or all
of this phase.
The depressed trajectory ballistic missile reenters the atmosphere at a

shallow angle relative to the minimum-energy trajectory case, increasing
the amount of time it spends traversing the atmosphere and enhancing the
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Figure 7. Calculated flight paths of a hypersonic glider and a ballistic missile flying minimum
energy and depressed trajectories, fired at a target 8,100 km down-range. All missiles use identi-
cal Minotaur IV boosters. The hypersonic and ballistic depressed trajectory launches use similar
boost phase trajectories based on those used in HTV-2 flight tests. The dashed section of the
hypersonic curve represents analytic results rather than detailed modeling. Part (a) shows the
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sharp turns toward the down-range direction during the boost phase, and the depressed trajec-
tory vehicle reenters the atmosphere at a relatively shallow angle.
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effects of drag. While it begins the terminal phase at a higher velocity than
the hypersonic glider, it loses much of this speed by the time it approaches
the target. Equipping the missile with a lifting reentry vehicle, as discussed
above, would allow it to more quickly dive to the ground and to maintain
speeds higher than that of the hypersonic glider throughout the ter-
minal phase.
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Detection, tracking, and early warning
In addition to their purported speed advantage, it is often claimed that
hypersonic weapons can bypass existing early warning systems, further
attenuating adversary response times. To be sure, their low-altitude flight
significantly reduces the range at which they can be detected by ground-
based radar systems compared with ballistic missiles, since Earth’s curva-
ture blocks a radar’s line-of-sight to a low-flying glider at distances of more
than a few hundred kilometers.51 The formation of a high-temperature
plasma sheathe around a hypersonic glider might also alter its radar
cross section.52

However, two states at the forefront of the hypersonic arms race, the
United States and Russia, do not rely solely on ground-based radar to
detect missile attacks; both have fielded space-based sensors since the
1970s.53 China is reportedly developing its own space-based early warning
system with assistance from Russia.54 These satellite-mounted IR detectors
are designed to spot the bright rocket plumes produced by ballistic mis-
sile launches.
Space-based IR sensors will also detect the launch of hypersonic boost-

glide weapons, since they are launched on large rockets similar to those
used with ICBMs. Moreover, hypersonic glide through the atmosphere pro-
duces immense heating of glide vehicles and the surrounding air, yielding
strong IR signatures that, when sufficiently intense, can be detected by
space-based sensors. Thus, while hypersonic weapons might bypass some
components of early warning systems, they are particularly vulnerable
to others.
To quantify the visibility of hypersonic gliders to space-based IR sensors,

we modeled the heating and thermal radiation of these vehicles. Figure 10
shows, as an example, the calculated temperature distribution along the
centerline of the upper surface of a glider traveling at v¼ 6 km/s at its equi-
librium glide altitude of h¼ 49.7 km. Our results show good agreement
with prior computational fluid dynamics calculations by Niu et al.55 For
example, they report temperatures along the upper surface centerline,
excluding the vehicle’s rounded nose tip, in the range 2,060–1,130K for
glide at a velocity of v¼ 5.4 km/s and an altitude of h¼ 60 km. Our model
predicts temperatures in the range 1,950–1,310K under the same
conditions.56

These surface temperatures vary with the velocity of the glider and the
density of the surrounding air (Equations (8)–(10)). Figure 11 shows the
temperature evolution as a function of glide range at a point on the glider
centerline 1m behind the vehicle nose.57 These temperatures are far in
excess of those experienced by ballistic missiles during their mid-course
flight through outer space, which are typically below 300K.58
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These extreme temperatures give rise to intense emission of radiation in
the IR spectrum. Our calculated radiance results again agree well with pre-
viously reported values. For example, Niu et al. calculated overhead radiant
intensities of �105 kW/sr in the 3–5 mm band and �14 kW/sr in the
8–12mm band for a vehicle traveling at v¼ 5.4 km/s at an altitude of
h¼ 60 km.59 Our model yields similar overhead radiant intensities of
113 kW/sr in the 3–5 mm band and 15 kW/sr in the 8–12mm band for the
same flight conditions.
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To assess the visibility of this IR emission to early warning systems, we
compared the calculated radiant intensities of a glider with the IR sensitiv-
ities of both existing U.S. space-based detection systems, using data avail-
able in the open literature. The U.S. space-based early warning system is
composed of two sets of satellites: the Defense Support Program (DSP),
first deployed in the 1970s, and the Space-Based Infrared System (SBIRS),
currently under development with the first satellite launched in 2011.60

Modern DSP satellites use linear sensor arrays, �6,000 pixels long, that
rotate to cover the visible disk of Earth in 10 second intervals.61 This yields
spatial resolution on the order of 1 km and collection times on the order of
100 microseconds.62 These sensors are tuned to a narrow wavelength band,
2.69–2.95 mm, where the atmosphere blocks most transmission of IR radi-
ation from the Earth’s surface, reducing background signal.63 The ability of
DSP satellites to observe even relatively dim, short-range missile launches
was established in the 1990–1991 Gulf War, when they routinely detected
launches of Iraqi Scud missiles.64 This allows for determination of an
approximate lower radiant intensity threshold for detection by DSP.
Assessing the available data on Scud IR emission, Garwin and Postol place
this threshold at �20 kW/sr in the 2.69–2.95 mm band.65

Because hypersonic gliders are launched on large rockets, rocket plumes
from these launches will be readily detectable by existing space-based sen-
sors like the DSP. Furthermore, our results show that a hypersonic glider
would emit above the threshold for reliable detection by the DSP for a sub-
stantial portion of the glide phase. Figure 12 shows calculated glider radiant
intensities in the 2.69–2.95 mm band as a function of range. For example, a
weapon entering glide at v¼ 6 km/s would emit above the DSP detection
threshold for the first �19minutes of glide, corresponding to about three
quarters of its maximum glide range.66 Based on DSP’s spatial and time
resolution, it might conceivably provide tracking capability throughout this
period, as it does for ballistic missiles.67

The more advanced SBIRS system could detect and track gliders for an
even longer portion of glide. While relatively little information on SBIRS
detection parameters is available in the open literature, a 2004 study by the
American Physical Society reports technical characteristics of a notional
SBIRS-like system.68 This study assumes, based on commercially available
technology at the time of its writing, that a step-stare detector operating in
the short-wavelength infrared (SWIR) band (1.4–3.0 mm) with a 1 km2 pixel
footprint, 33ms collection time, and 1 s revisit time reasonably approxi-
mates the likely performance of a SBIRS detector.69 These parameters are
generally consistent with those proposed early in the SBIRS develop-
ment process.70
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Accounting for the effects of atmospheric absorption, background signal,
etc., the APS study concludes that a notional SBIRS like system “could
detect sources with luminosities as low as 6 kW/sr [in the SWIR band]
with some margin of safety” and could determine the three dimensional
position of such a source to within less than 300m.71 As shown in Figure
13, a hypersonic glider emits above this detection threshold for essentially
the entirety of glide.72 This further indicates that hypersonic missiles can
be detected by existing space-based sensor technologies. Moreover, given
the predicted spatial precision of the SBIRS system and its short revisit
time, tracking hypersonic gliders through most of their flight is
likely feasible.
While hypersonic missiles will remain visible to space-based sensors

throughout much of their glide phase, for sufficiently long flights there
might exist short periods near the end of glide when the vehicle has slowed
enough that its radiant intensity drops below the threshold for detection.
For our model, the overhead radiant intensity drops below the SBIRS
detection threshold when the glider slows to v¼ 1.6 km/s (around 26 km
altitude) and below the DSP threshold when it slows to v¼ 3.5 km/s
(around 37 km altitude). Even with precise tracking up to this point, there
could remain a degree of uncertainty in the missile’s subsequent trajectory
and its ultimate target. Still, this post-detection maneuvering will be strictly
limited by the reduced velocity of the vehicle at this stage. Figure 14 illus-
trates the calculated maximum achievable cross-range travel of a glider if
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maneuvering is delayed until IR emission drops below a certain detec-
tion threshold.
For the 6 kW/sr detection threshold predicted for a SBIRS-like system in

the SWIR band, maximum cross-range flight of only �200 km and down-
range flight of �400 km would be possible once a glider had slowed
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sufficiently to emit below this threshold (at velocities below the hypersonic
regime, as shown in Figure 3). At this point, the missile would threaten a
region roughly equivalent in area to Nicaragua or the U.S. state of
Pennsylvania. Thus, while some targeting uncertainty would remain even
after detection and tracking by space-based sensors, this uncertainty would
be tightly constrained by physical limitations on the maneuvering of a mis-
sile. Furthermore, this uncertainty pertains only to detection and tracking
by space-based sensors. As a glider approached to within a few hundred
kilometers of its target, it would become visible to ground-based radar sys-
tems that could provide continuity of tracking.73

Misperceptions of hypersonic missile capabilities

This analysis demonstrates the falsity of common claims regarding the
capabilities of hypersonic weapons. Computational modeling indicates that
ballistic missiles fired on depressed trajectories can fly intercontinental dis-
tances significantly faster than can hypersonic boost-glide systems (Figure
8). Furthermore, its shows that hypersonic weapons are not invulnerable to
detection by early warning systems but will instead remain visible to space-
based sensors during launch and the majority of the glide phase. They are
thus unlikely to meaningfully reduce the time available for a targeted
adversary to respond.74

This misalignment between oft-repeated claims of hypersonic weapon
performance and their apparent technical capabilities raises several ques-
tions. How did these misconceptions originate? Why have they persisted?
Why are states so ardently pursuing weapon systems that do not perform
as advertised? Clearly, answers to these questions are not to be found in
the technical basis for hypersonic missile performance. Rather, they require
analysis of the processes by which technological facts regarding hypersonic
missile performance—delivery times, vulnerability to detection, etc.—have
been socially constructed.75 Here, we consider the U.S. hypersonic program
as a representative case.

The social construction of technical facts
U.S. hypersonic missile development is led by the Department of Defense
(DOD), which currently oversees at least six distinct programs spread
across the military services and DARPA.76 As shown in the modeling
results reported here, many of the justifications the DOD has offered for
hypersonic weapon development, based on their purportedly revolutionary
capabilities, do not hold up to technical scrutiny. Furthermore, several ana-
lysts have concluded that DOD planning in this area appears only weakly
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tied to any specific military mission or objective.77 This suggests that fac-
tors unrelated to missile performance may be driving development.
The unique organizational predilections of the DOD illuminate several

possible factors. For example, Allison and Zelikow identify in DOD behav-
ior “effective imperatives to avoid… inferiority to an enemy weapon of any
class” or “a decrease in dollars budgeted.”78 Both driving forces for weapon
development are independent of technical performance parameters. Instead,
they incentivize the pursuit of weapons that match those under develop-
ment by adversaries and that present opportunities for the capture of
budgetary resources—descriptions clearly applicable to hyper-
sonic weapons.79

Yet while the DOD’s pursuit of a missile technology may be only weakly
tied to technical capabilities, social conceptions of missile performance play
a key role in the marshaling of external support for weapons development.
The DOD alone cannot establish and carry out a missile development pro-
gram; it must enroll the support of others with different, potentially con-
flicting organizational interests, such as congressional appropriators.
In their sociological studies of U.S. ballistic missile development pro-

grams, MacKenzie and Spinardi show that this dynamic, in which propo-
nents of new missile technologies enroll the support of skeptical actors
external to their organizational unit, is typical of weapons development
efforts and begets particular social processes by which technical facts
regarding missile performance are socially constructed.80 In these processes,
development of a new missile technology is not “a matter of engineering
just metal, wires, and equations. People [have] to be engineered, too.”81

Success requires the engineering of a sociotechnical ensemble that “includes
both gyroscopes and Senators, and if one is seen not to work as intended,
the other may not either.”82 DOD proponents of new missile technologies
construct these ensembles through processes termed “heterogeneous engi-
neering,” wherein technologists develop weapons that work, in a technical
sense, while simultaneously shaping social perceptions of what a “working”
system entails.83

Establishing the credibility of technical claims regarding the advantages
of a weapon system is, according to MacKenzie, a “key role” played by het-
erogeneous engineers.84 To this end, they seek to construct technical facts
that cast their favored technology as desirable and necessary.85 Thus, social
and organizational interests become embedded in ostensibly technical argu-
ments. The actual technical capabilities of a weapon are often subordinated
to these social factors: “whether [a missile] would actually perform to speci-
fication in a war situation is a moot point and not actually crucial to the
success of the technology…what matters is that the technology succeeds as
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a network of interests,” incorporating political, organizational, financial,
and professional incentives.86

In the United States, the DOD has acquired broad leeway to unilaterally
define the technical capabilities of hypersonic weapons. As Oelrich
observes, “virtually anyone in the United States who has a solid technical
understanding of hypersonic aerodynamics is working for the Defense
Department, one of the national laboratories, a contractor working for
Defense, or is a university researcher supported at least in part by Defense
Department grants.”87 This near-monopoly on relevant technical expertise
is buttressed by a permissive culture among congressional appropriators.
Since they often lack the capacity for detailed technical analysis, “questions
of weapons technology are largely… left to those most imbued with that
particular culture,” in this case DOD representatives.88

Analysis of the U.S. hypersonic program through this sociological lens
reveals numerous examples of heterogeneous engineering on the part of
DOD officials, through which erroneous claims regarding the performance
of these weapons became embedded in dominant governmental, scholarly,
and media discourses. Here, we examine two representative instances rele-
vant to the issues discussed in this work—missile delivery times and visibil-
ity to space-based sensors.

Claim 1: Attenuated delivery times
It is commonly claimed that hypersonic weapons can reduce warhead deliv-
ery times by reaching their targets faster than existing ballistic missiles
could. In 2019 testimony before the U.S. Senate Committee on Armed
Services, the Commander of U.S. Strategic Command addressed this deliv-
ery time issue. Asked how long it would take a Russian hypersonic glide
weapon to strike the United States, he responded: “it is a shorter period of
time. The ballistic missile is roughly 30minutes. A hypersonic weapon,
depending on the design, could be half of that, depending on where it is
launched from, the platform. It could be even less than that.”89

This comparison between hypersonic and ballistic missiles, phrased so as
to suggest that the former is intrinsically faster than the latter, is mislead-
ing. The 30-minute figure provided for a ballistic strike corresponds to a
missile launched from Russia on a minimum energy trajectory.90 A ballistic
missile launched nearer to U.S. soil (e.g., from a submarine in the Pacific
Ocean) would reach its target much more quickly, as would one launched
on a depressed trajectory. As shown in Figure 8, a hypersonic weapon
would take �25minutes to travel the distance between western Russia and
the eastern United States, making it only slightly faster than an ICBM
strike using a minimum energy trajectory, and slightly slower than an
ICBM strike using a depressed trajectory. The 15-minute figure provided to
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Congress corresponds to a hypersonic weapon launched much closer to
U.S. soil—an example of forward basing that is equally applicable to ballis-
tic missiles.
In this skillful demonstration of heterogeneous engineering, the delivery

time of a forward-based hypersonic missile was compared with that of a
ballistic missile launched from a much greater distance; this argument for
the advantages of forward basing was presented to legislators as an argu-
ment for the advantages of hypersonic missile technology. The implication
that a hypersonic missile could halve the time necessary to deliver a war-
head between Russia and the United States—while false—subsequently per-
meated the U.S. discourse, fueling narratives of the revolutionary nature of
these weapons.91

Claim 2: Evasion of early warning systems
Even if it flew no faster than a ballistic missile, a hypersonic weapon might
still reduce adversary response times if it were able to bypass early warning
systems. In 2020, the Under Secretary of Defense for Research and
Engineering stated that hypersonic missiles are “20 times dimmer, or more,
than the targets [the United States is] able to track” with its SBIRS satel-
lites, suggesting a need for new satellite sensors.92 The Director of the
Missile Defense Agency told the Senate Committee on Armed Services that,
due to this dimness, a new satellite constellation would be necessary to
detect hypersonic missiles.93

It is true that, in its glide phase, a hypersonic vehicle will not match the
>1MW/sr IR intensity of the large rocket exhaust plumes that current
space-based sensors were designed to observe.94 But this is not a particu-
larly relevant comparison. First, intercontinental-range hypersonic boost-
glide weapons are launched on the same rockets as are ICBMs.95 Therefore,
hypersonic missile launches will not be appreciably dimmer than ICBM
launches. Second, IR emissions from hypersonic gliders will remain sub-
stantial long after launch (Figure 12). The relevant comparison in this case
is not the IR intensity of a glider relative to that of a ballistic missile rocket
plume, as quoted by DOD officials, but rather its intensity relative to the
detection and discrimination capabilities of space-based sensors. As shown
in Figures 12 and 13, gliders will emit above the detection thresholds of
both the SBIRS and DSP systems for much of their flight.
DOD statements comparing glider IR intensity with that of a rocket

plume, rather than with the detection limits of existing space-based sensors,
constitute another example of heterogeneous engineering. In promoting a
misleading narrative regarding the adequacy of current detection systems
for hypersonic early warning, they justify not only U.S. hypersonic weapon
development but also plans for deployment of a vast new satellite
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network.96 Claims regarding the purported undetectability of hypersonic
weapons have subsequently been repeated in the news media, where they
are presented as technical facts.97

Conclusions

Computational modeling of hypersonic boost-glide missiles reveals that the
capabilities of these weapons are limited by fundamental physical con-
straints. The drag forces they encounter during low altitude glide rapidly
reduce their velocity. Because hypersonic flight is characterized by tradeoffs
between speed, altitude, maneuverability, etc., this deceleration severely
restricts overall missile performance. Low altitude flight also produces
immense heating of glider surfaces, yielding IR signatures sufficient for
detection by existing space-based sensors.
These results call into question many of the purported advantages of

hypersonic weapons over existing missile technologies. For instance, model-
ing shows that an ICBM flying a depressed trajectory could reach intercon-
tinental targets faster than a hypersonic glider launched on the same rocket
booster, with similar vulnerability to detection by space-based early warn-
ing systems. Similarly, ballistic missiles exhibit higher terminal phase veloc-
ities than hypersonic gliders. A ballistic missile equipped with a MaRV
might therefore exhibit terminal phase maneuverability superior to that of
a hypersonic weapon, allowing it to better evade defensive interceptors or
strike mobile targets.
That said, hypersonic weapons possess some attributes or combinations

of attributes distinct from those of existing missile technologies. Their man-
euverability in the glide phase allows them to fly trajectories unachievable
by ballistic missiles at speeds unachievable by typical cruise missiles. This
would allow them to, for example, fly under the reach of missile defense
systems designed to intercept reentry vehicles above the atmosphere. But,
considering these modest distinctions between the capabilities of hypersonic
missiles and ballistic missiles, the former would be best characterized as an
evolutionary—not revolutionary—development relative to existing mis-
sile technology.
The apparent mismatch between widespread perceptions of hypersonic

weapons and their actual technical capabilities can be attributed to the
dominant role that proponents of these weapon systems have played in the
social construction of technical facts regarding their performance. Several
erroneous beliefs about hypersonic weapons—their supposed attenuation of
delivery times or invulnerability to detection by existing early warning sys-
tems—can be traced to statements by DOD officials tailored to imply
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revolutionary capabilities and, in doing so, to justify the expenditure neces-
sary for development and deployment of these systems.
Our findings clarify the probable performance of hypersonic missiles,

while also demonstrating a need for further technical assessment. Beyond
the issues explored here, there remain several unresolved questions that fol-
low-on research might address. For example, this analysis reveals the sensi-
tivity of hypersonic missile performance to glider aerodynamic parameters,
particularly L/D, which determines the magnitude of the drag a glider expe-
riences. As Acton notes, the L/D of the HTV-2, the glider on which much
of this analysis is based, is relatively low.98 If a higher L/D were achieved
in future missile designs, glider performance (speed, range, etc.) would be
enhanced. Yet competing factors, such as the thermal resilience of materials
used in a glider’s leading edges, may preclude substantially higher L/D val-
ues.99 Assessment of the precise determinants of achievable L/D values, as
well as other limitations on glider performance related to the thermal resili-
ence of existing aeroshell materials, would provide an improved under-
standing of hypersonic weapon capabilities.100

Additional analysis of the vulnerability of hypersonic weapons to missile
defenses would also be useful. Boost-glide systems could be vulnerable to
boost-phase missile defenses early in flight, should those defenses be devel-
oped. During their glide and terminal phases hypersonic weapons would fly
at altitudes too low for interception by defenses designed to intercept ballis-
tic missiles above the atmosphere, such as the U.S. Ground-based Missile
Defense (GMD) and ship-based Aegis systems.101 Endoatmospheric
defenses such as the U.S. Patriot and THAAD systems operate within the
atmosphere, but are designed to intercept warheads from missiles with
shorter ranges and slower speeds than ICBMs.102 These systems might be
capable of engaging hypersonic vehicles during the glide or terminal
phases, given the relatively low speeds of gliders after extended flight
(Figure 9). However, the maneuverability of a glider might prevent the cur-
rent generation of defenses from successfully intercepting these targets.
Future versions of these defenses might be more effective against maneu-
verable vehicles but would still be capable of defending only relatively small
areas. The potential for hypersonic missiles to bypass missile defenses likely
motivates Russian and Chinese development of hypersonic weapons as a
hedge against U.S. missile defense systems, just as those countries are likely
developing decoys and other countermeasures against U.S. exoatmospheric
defenses.103

Finally, there remain several questions regarding hypersonic weapon
guidance and communications. The formation of a high temperature
plasma in the air surrounding a glider might hinder radio communications
with external guidance references, like GPS satellites.104 That said, the
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results reported here suggest that hypersonic gliders would be traveling
slowly enough to preclude plasma formation during the terminal phase
when guidance and communication are likely to be most important.
The modeling approach outlined here provides a basis for quantitatively

addressing these, and other, unresolved questions regarding the perform-
ance of hypersonic weaponry.
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thrust, drag, and gravity.105

Since the HTV-2 glide vehicle considered in this analysis was launched on a Minotaur
IV rocket booster in flight testing, we developed a model of this booster and used it to cal-
culate both the early trajectory of the hypersonic missile and the delivery trajectories and
times of ballistic missiles delivering warheads to the same range as the hypersonic vehicle.
We used this booster model to simulate missiles on both minimum-energy trajectories
(MET) and depressed trajectories (DT) to various ranges. Details of the Minotaur model
and the trajectory used for the HTV-2 vehicle are discussed in detail elsewhere.106

The equations of motion over a round, non-rotating Earth with a realistic atmosphere
are given below.107
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were t is time, v(t) is the magnitude of the velocity, c(t) is the angle of the velocity with
respect to the local horizontal, h(t) is the altitude, m(t) is the mass of the missile, T(t,h) is
the booster thrust, Cd(v) is the drag coefficient of the missile, A is the missile’s maximum
cross-sectional area, g(t) is the angle of the thrust with respect to the missile body axis,
g(h) is the gravitational acceleration, re is Earth’s radius, W(t) is the range angle of the mis-
sile around the Earth, and q(h) is the atmospheric density. Wre is the missile’s range meas-
ured along the surface of Earth. The geometry is shown in Figure 2 in the main text. We
integrate these equations of motion over time using the midpoint method (second-order
Runge-Kutta), modeling atmospheric density using the 1976U.S. Standard Atmosphere.108

Thrust of a missile stage is given by:

T ¼ g0Isp
dm
dt

(5)

where g0 is the gravitational acceleration at the Earth’s surface, and for each stage Isp is the
specific impulse and dm/dt is the mass flow rate of the propellant through the engine.
Thrust is considered constant for all stages except the first, where its change with altitude
is given by:

T hð Þ ¼ g0Isp SLð Þ dm
dt

þ ANozzle p 0ð Þ � pðhÞ� 	
(6)

where Isp(SL) is the sea-level specific impulse of the first stage, Anozzle is the cross-sectional
exit area of the engine nozzle of the first stage, and p(h) is the atmospheric pressure.
During reentry, the drag of a missile’s reentry vehicle is characterized by the ballistic coeffi-
cient b ¼ m/(Cd A), where m, Cd, and A are the mass, drag coefficient, and cross-sectional
area of the warhead, respectively.
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