
ARTICLE

Review and Redaction-Tolerant Image Verification
Using Cryptographic Methods

Robert J. Hughes

AWE, Reading, UK

ABSTRACT
Verification inspections that support nuclear weapon arms con-
trol treaties can require photographs to be taken as part of the
inspection evidence. In a nuclear weapon facility, the host
would generally want to review images before they are released
to the inspector to prevent the accidental release of sensitive
information. Currently, giving the host sole custody of the
images for review severely impacts the confidence of the
inspector that the images are genuine and unmodified. This
paper outlines how simple cryptographic methods can be
employed to allow the host sole custody for review while main-
taining the inspector’s confidence in the veracity of the images.
The concept is then expanded to propose and illustrate the cap-
ability for the host to redact a portion of an image while still
allowing the inspector to verify that the remainder of the image
is genuine. The ability to allow a host to have sole custody of
images for review, and even redaction, without affecting
inspector confidence in the veracity of the images they receive
would contribute to improved processes for nuclear weapon
verification in future arms control treaties.

ARTICLE HISTORY
Received 9 September 2020
Accepted 2 February 2021

The problem

In an arms control verification inspection, the inspectors may wish to take
photographs and retain them for analysis after the inspection. Obvious
examples include documentation of ambiguities, photographs of seals to
check for tampering, and photographs of features that might be considered
“unique identifiers” (UID) of items.1 Historically, photography has been
used in arms control verification inspections primarily to document any
objects or facilities related to ambiguities that cannot be resolved during
the inspection. In both the Conventional Armed Forces in Europe (CFE)
Treaty and the Intermediate-Range Nuclear Forces (INF) Treaty, photog-
raphy has been allowed as long as the camera produces duplicate, instantly
developed photographic prints, one each for the inspector and host party.2

However, in future nuclear weapon verification scenarios it is probable
that digital photography’s increased resolution will permit a larger role

CONTACT Robert J. Hughes Robert.j.hughes@awe.co.uk AWE, Aldermaston, Reading, RG7 4PR, UK
Ministry of Defence � Crown Owned Copyright 2020/AWE
� 2021 Taylor & Francis Group, LLC

SCIENCE & GLOBAL SECURITY
2021, VOL. 29, NO. 1, 3–16
https://doi.org/10.1080/08929882.2021.1894810

http://crossmark.crossref.org/dialog/?doi=10.1080/08929882.2021.1894810&domain=pdf&date_stamp=2021-07-07
http://www.tandfonline.com


beyond the documentation of ambiguities; namely, in verifying the integrity
and authenticity of seals and UIDs. The age of instantly developed and
duplicate photographic prints has largely passed, with digital images
required to provide sufficient resolution for seal and UID comparisons. It
is therefore likely that more images would be taken (and potentially in
more sensitive facilities) than with previous treaties, prompting host con-
cerns over the unintentional release of sensitive information in the photo-
graphs taken during an inspection. To alleviate these concerns, the host
may insist on retaining possession of the images to review and may redact
sensitive information before releasing the images to the inspectors.
The inspectors are then faced with the issue of confirming that the

images released by the host are, in fact, the exact images taken during the
inspection. The inspectors will want to rule out several possible modifica-
tions, malicious or otherwise, such as image replacement, data corruption,
or image manipulation. This paper outlines cryptographic methods that
allow host review of imagery while enabling the inspectors to confirm the
authenticity of the photos that are supplied by the hosts, post-review. To
be useful for nuclear treaty verification, the methods must:

1. Give the inspectors confidence that the images are unaltered, except
where clearly redacted

2. Give the hosts confidence that no sensitive information can be derived
from the information and images given to the inspectors

This paper begins with an outline of cryptographic hashing, followed by
a description of its potential utility in image verification. A hardware and
software prototype for following the cryptographic method is described.
The ability of Merkle Trees to facilitate verification of partially redacted
images is then discussed.

Cryptographic hashes

Cryptographic hashes take an arbitrary length data input and produce a
fixed-length output, called a message digest. For SHA-256, a common
secure hash function, the message digest is 256 bits long, usually repre-
sented as a 64-digit hexadecimal message (see Table 1 for example message
digests), and requires no encryption keys.3 A cryptographic hash function,
in this case SHA-256, has four properties that make it useful for validating
that a file is unchanged:

� It is a deterministic process, meaning that the same data input (identical
at the bit-level) will always produce the same message digest

4 R. J. HUGHES



� It has a property known as the “avalanche effect” which means that a
small change to the input (even a single bit) will produce a radically dif-
ferent message digest

� It is a one-way function, meaning that the 64-character message digest
cannot be used to reconstruct the original data input

� It is collision resistant, meaning that it would be computationally infeas-
ible to find any two different inputs, m1 and m2, which would produce
the same message digest. This is termed “strong collision resistance.”4

As an example of the output from hash algorithms, Table 1 shows the out-
put from three separate strings used as the data input. The three strings have
different lengths, but consistent 64-character (i.e., 256-bit) hexadecimal mes-
sage digests. A single character difference between the first two strings produ-
ces vastly different message digests. Nothing can be inferred about the
original string from the message digest; this illustrates that hashing is consid-
ered a “one-way function.”
It is important to remember that the message digests produced in Table 1

(using the Python “hashlib”module) are deterministic, i.e., the SHA-256 algo-
rithm will always produce the message digest given in the first row if the input
is exactly the same character string “Nuclear Treaty Verification.”5 The same
deterministic property is true with any data input, including images, as long
as the same hash algorithm is used, such as the SHA-256 standard.

Single image verification

Cryptographic hashes provide a method through which images can be veri-
fied as genuine images that have not been modified in any way, even at the
bit level. This would enable the images to be retained by the host for pri-
vate review while the inspectors would still be able to confirm that the
images are genuine, and unmodified, when they receive them. The host
and inspector would have to agree upon a hash algorithm to use, for which
SHA-256 is a candidate as a widely used, standardized, hash algorithm.6

Concept

The basic concept requires the message digests of each image file to be
recorded at the time of image capture. This could be achieved through

Table 1. Example message digests using SHA-256 (computed using the Python
“hashlib” module).
Input message SHA-256 message digest

Nuclear Treaty Verification 2abf67e751947a71cab8ef33c3f268bfcb067d54194247078366334e1b152bc0
Nuclear Treat Verification 3fb55f6190b5602b9c702f810b774179c3c171a88f062e5a78e0f2744d08005a
NTV b79dfb4f8596daf19d406cb29d7933c9628571b4e5809ea325d44fc3e830034c

SCIENCE & GLOBAL SECURITY 5



either the inspectors writing down the digests as the images are captured
or, less onerously, the digest strings could be printed out from the camera,
either physically or on removable media. The inspectors then retain the
message digest strings to compare with the message digests of the images
when they are received from the host. It is important to remember here
that the message digest is the output of a one-way function and cannot be
used to reconstruct the original data. Upon receipt of the reviewed images,
if the message digests match those recorded at the time of image capture
the inspectors can be confident that the images are genuine and unmodi-
fied. The host, meanwhile, can be confident that no sensitive information is
passed to the inspector, either through the message digest or the carefully
reviewed image. If the host chooses to withhold a particular image, the
inspector is left with only a message digest which cannot be used to recon-
struct the image.

Hardware and software implementation and prototype

The generation of the message digests for each image can be driven by the
use of peripheral hardware physically attached to the camera. As a proto-
type, a DSLR camera was attached to a Raspberry Pi running a Python
script that triggered the camera and calculated the message digest of the
resulting image as soon as it is saved to the camera.7 It required the use of
open software called “gphoto2” to drive the camera and access the image
directly, and then the “hashlib” function in Python to generate the mes-
sage digests.8

The prototype setup was used to take a photo and automatically calculate
the message digest, the results of which are shown in Table 2.
After the message digest is calculated, the images themselves remain on

the camera’s memory card, with the message digests saved to a memory
card in the Raspberry Pi. The message digest memory card can be given to
the inspector, while the host retains the images on the memory card inside
the camera to take for review.
In the interests of satisfying the security and authentication requirements

of both the host and inspector parties, it is suggested that the host provide
the empty memory card (limited to a very small capacity, e.g., 256 kB) and
camera, while the inspector provides the peripheral hardware which calcu-
lates the message digest (shown schematically in Figure 1). The memory
card and peripheral unit are small and inexpensive, which allows for ran-
dom selection and destructive testing to be employed for authentication
purposes.9 Prior to an inspection, several memory cards and peripheral
units can be presented. The host randomly selects one peripheral unit for
the inspection, and randomly selects another for authentication (which can

6 R. J. HUGHES



include destructive testing) to ensure that the hardware and software con-
tain no illicit functionality. The inspector gets the same privileges for the
memory cards. The items chosen for use in the inspection can be placed
under chain of custody measures until the inspection begins. The same
process of random selection and destructive testing could also be applied to
the camera, albeit at a greater cost. The combination of random selection
and destructive testing ensures that any attempts to subvert the correct
functioning of hardware and software runs a high risk of detection.
After the inspection, the host party keeps the camera and the peripheral

unit for further authentication, while the inspector party can take the low
capacity memory card which contains only the message digests. This
method assures the host that the memory card cannot contain any imagery,
due to the low-memory capacity, and the host is also able to interrogate
the peripheral unit during authentication to check for any illicit behavior.
The inspector can be certain that the peripheral unit has controlled the
camera and calculated the message digests correctly because they have pro-
vided the hardware and software to achieve it. By writing the software such
that the memory card is formatted at the start of the procedure, the
inspector can also be assured that the message digests have not been calcu-
lated for pre-staged images and loaded onto the memory card before the
inspection (see also the discussion on “replay attacks” in the next section).
The software and hardware requirements described here are minimal

and can easily be executed on a Raspberry Pi Zero. For the sake of certifi-
cation and authentication, it would be preferable to create bespoke hard-
ware and software for the peripheral unit since authentication of the
operating system on the Raspberry Pi could be challenging.

Protecting against replay attacks

There would be a possibility that images could be produced before the
inspection and stored on the camera by a malicious host, especially if the
most likely images could be predicted, such as closeup images of seals. The
genuine message digests of these maliciously prepared images would be

Table 2. The image captured, and message digest calculated, by the prototype setup.
Image Message digest

61405b2816ededaa0442668326206426fc6bbbdb4a7493df12cf0d2317496050

SCIENCE & GLOBAL SECURITY 7



provided to inspectors during an inspection such that the malicious images
would appear valid when subsequently received by the inspectors. This
kind of attack is analogous to a “replay attack” in network security proto-
cols, where a valid message is delayed or repeated by a malicious adversary
to circumvent security protocols.10

Totems
To prevent this type of attack, there needs to be some element of the data, in
this case images, that can be random or controlled by the inspector. An
example would be the inclusion of a totem in the image, an object known only
to the inspector before the inspection begins. A very crude example would be
the inclusion of the inspector themselves in the image. The identity of the
inspector is likely not in the host’s control, alongside the inspector’s positioning
in the image and any gestures they wish to make. This combination of elements
would make it extremely difficult to prepare images (and their message digests)
before an inspection begins, thus preventing an easy replay attack.

EXIF data
An additional way to protect against replay attacks would be to require
EXIF (exchangeable image file format) metadata in every image and ensure

Figure 1. A schematic of the proposed process that should assure the inspector and host par-
ties that information is not faked or accidentally disclosed during an inspection. The inspector
provides the peripheral unit and receives the low-capacity memory card containing the mes-
sage digests. The host provides the low-capacity memory card and keeps the peripheral unit
for authentication.

8 R. J. HUGHES



that the EXIF metadata is included in the hashed data. EXIF is a standard
for specific metadata tags added to, among other things, JPEG images
recorded by digital cameras.11 The acceptable metadata tags can include
camera settings (such as shutter speed), copyright information, location
(such as latitude and longitude), and the date and time, down to the
second. The EXIF data could then be used as the element of the image that
is under the inspector’s control.
The inspector can choose and record, down to the second, the time at

which any image is taken. The time is then included in the data within the
image file that is hashed, with the message digest given to the inspector.
This would be a relatively simple method to further complicate the ability
of a malicious host to prepare a replay attack.

Sophisticated replay attacks
While this section described two relatively simple ways to protect against a
replay attack, it remains feasible that a sophisticated host could preempt
every photo and insert the correct totem or EXIF data onto the prepared
image as the image is taken. However, the methods outlined here, coupled
with the inspector having some influence over the content of the images,
and in what order they are taken, increase the cost both financially and
technologically in trying to defeat the system. Another potential avenue for
mitigating a sophisticated replay attack would be for the inspector to pro-
vide the camera and leave it with the host after the event, or for both par-
ties to agree on commercial, off-the-shelf (COTS) cameras. Random
selection and destructive testing for authentication, as mentioned previ-
ously, could be employed on inspector-provided or COTS cameras to give
the host confidence that there is no illicit functionality.

Redaction

In this case of using simple cryptographic hashes for image verification,
any genuine redaction that is required by the host during review of the
imagery would render the image untransmissible. Partial redaction of an
image, for instance to remove or obscure an object captured accidentally in
the background, would constitute a modification of the image data and
would result in a different message digest that could not be verified by the
inspectors against the list of digests generated during the inspection.
Redaction of images, or even parts of images, may be tolerated by both

the inspector and host using another cryptographic tool, Merkle Trees.

SCIENCE & GLOBAL SECURITY 9



Merkle trees

Merkle Trees are used for file verification purposes in many decentralized
systems, such as Bitcoin and peer-to-peer file sharing networks. It is a con-
cept that allows portions of data to be verified as genuine without having
to evaluate the entire data set.12

The Merkle Tree breaks a data file into smaller chunks of an arbitrary
size. Each chunk of data is hashed to produce a message digest, as
described previously. Each message digest is paired with another data
chunk’s message digest, concatenating the two digest strings together. The
concatenated string is then itself hashed to produce a new message digest.
The hierarchical process is then repeated until there is only one message
digest, known as the “Merkle Tree Root.” It is possible to concatenate more
than two digest strings together, but the “binary” Merkle Tree, illustrated
in Figure 2, is the simplest version.
The benefit of a Merkle Tree is its ability to verify that a particular

chunk of data is authentic and is a component of the genuine complete
data file, without accessing the complete, genuine file. It requires the
Merkle Tree message digests (the root digest and each of the child message
digests) to be stored somewhere trustworthy such that they can be used for
validation, but it does not require the whole genuine data file to be stored
anywhere trustworthy for validation.
As an example, if a user downloads data chunk “b” in Figure 2, they

would only require three message digest strings (H(a), Hcd, Hefgh) to calcu-
late the root digest for themselves, and compare it to the original root
digest (Hroot). In this way, they can confirm by themselves that data chunk

Figure 2. Schematic of a Merkle Tree for a data file which has been split into 8 blocks (a–h at
the foot of the diagram). The “þ” sign indicates a concatenation of strings, and H(x) indicates
the message digest of x.

10 R. J. HUGHES



“b” is genuinely a part of the whole data file without knowing the remain-
ing contents of the data file.

Redaction-tolerant image verification

Partial redaction of an image

A key advantage of the Merkle Tree method in image verification is that it
enables the host to redact a part of an image, yet release the redacted image
to the inspectors such that the inspector can maintain confidence in the
remainder of the image. Merkle Trees, as described in the previous section,
are typically used to confirm that a portion of data is a genuine part of a
larger data file. In the case of redacted image verification, the Merkle Tree
will confirm that the non-redacted parts of the image are from the ori-
ginal image.
Conceptually, the image can be broken up into smaller portions with

each portion of the image as the base-layer data blocks (a–h in Figure 2) in
the Merkle Tree. The Merkle Tree root digest is then calculated and given
to the inspector during the inspection. If the host chooses to redact one or
several portions of the image the host would only have to provide the mes-
sage digest of each missing image portion to the inspector alongside the
non-sensitive portions of the image. Given that a cryptographic hash is a
one-way function, the sensitive information in the data file (the image por-
tion) cannot be reconstructed from the message digest. When the inspector
receives the released image portions and the message digests of the
redacted image portions, if the calculated Merkle Tree Root of the redacted
image is not exactly equivalent to the Hroot recorded during the inspection,
then either the message digest of the missing portion is incorrect, or the
remaining portions of the image have been modified.
The use of the Merkle Tree method allows for partial redaction, and yet

would require no extra information to be passed to the inspector at the
time of image creation. The inspector will only require the Merkle Tree
Root (Hroot) at the time of image creation, which is the same size as the
message digest (e.g., 256-bits for SHA-256) discussed for the cryptographic
hash method outlined in the discussion about single image verification.
Using the prototype setup discussed in the earlier discussion on hard-

ware and software implementation and prototype, the open source Python
Imaging Library has been added to the software on the peripheral device to
take an image from the camera, slice it into eight equal-sized portions and
calculate the Merkle Tree root digest.13 The root digest is then saved to the
memory card as with the process in hardware and software implementation
and prototype.

SCIENCE & GLOBAL SECURITY 11



Partial redaction example

In 2017, the Quad Nuclear Verification Partnership undertook a simulated
verification inspection called “Letterpress.”14 During this simulation, several
hundred photos were taken as part of the inspection to confirm that seals
remained intact, and that unique identification labels were genuine.
Additional photos were taken to record the event, with one shown in
Figure 3, to demonstrate verification of a partially redacted image.
Figure 3 is an image from Letterpress of the inspectors (in white) being

escorted to a weapon storage area. For the purposes of this demonstration, the
piece of paper being carried by the person at the rear has been deemed to be
non-transmissible and must be redacted.
Ordinarily, the redaction of this part of the image would render the

whole image non-transmissible. However, if the process outlined in the
previous discussion of redaction is followed, then the redacted image can
still be transmitted to the inspector, with seven-eighths of the image still
verifiable as the original image.
The message digest can be computed for each section of the image using

SHA-256. The redaction of element 5 (bottom left in Figure 4) causes the
message digest to change considerably for this element of the image, with
the original and new message digests compared below:

Original element 5:

55eac164fbe600586e83b017886f5bb541e10b309a84336a96ccbecd1f1a735a

Redacted element 5:

05afacc5e3286ab83eac367225fe874cd1741cc9832d8c5aafd642e5c745c177

Figure 3. Left, the original image from Letterpress, showing the inspectors being escorted to a
weapon storage area. Right, a close-up showing the area of the image which requires redaction
for the purposes of this demonstration.

12 R. J. HUGHES



Using the Merkle Tree process, the Merkle Root for the original (un-redacted)
image is:
9a819007d12033795fedfaf9c0ffed9fd7abc7575c2e5dde3ca6cc9a941d54a4
This is the message digest that would be recorded and given to the

inspector when the photo is taken. Now that element 5 has had to be
redacted, the modifications to that element change the Merkle Root such
that the image as a whole could not be verified as genuine. The Merkle
Root with the modification is now completely different:
1da5a97efb00d1eba66996dd7298c41e518689c8d2d632fbedcd92b1cf12e803
However, if we are only given the original message digest for element 5

(and no more information about that element of the image), we are able to
reconstruct the entire Merkle Tree and verify the Merkle Root from the
other seven-eighths of the image. Thus, the majority of the image can be
verified by the inspector even while the information in element 5 can be
redacted, or removed entirely, from the information transmitted to the
inspector. Due to the nature of the SHA-256 function, neither the new nor
original message digest of the sensitive element 5 contains information that
could be used to reconstruct the image; thus, the sensitive data
is protected.

Figure 4. The image split into eight sections, with the redacted section highlighted in red (bot-
tom left).

SCIENCE & GLOBAL SECURITY 13



Conclusion

Cryptographic techniques can alleviate many of the issues associated with
image verification in an arms control inspection context. Typically, allow-
ing the host to have sole custody of data generated during an inspection
for any period of time would introduce many concerns for the inspector
regarding the integrity and authenticity of the data that is returned.
By utilizing cryptographic hashes of the image data, the inspector can be con-

fident that the returned images are unaltered and genuinely from taken from
the inspection. The one-way nature of a cryptographic hash also means that the
host can be confident that no sensitive information is put at risk when the mes-
sage digests for each image taken are given to the inspector before any image
review has occurred. These methods are demonstrably able to meet the two
requirements outlined in the introduction. The methods must:

1. Give the inspector confidence that the images are unaltered, except
where clearly redacted

2. Give the host confidence that no sensitive information can be derived
from the information and images given to the inspector

This paper has outlined and prototyped a method by which inspection
images can be reliably verified by an inspector even after the host has
maintained sole custody for a significant period. At the simplest level,
recording the message digests of each image would allow a one-to-one
comparison of image data at a later date to give the inspector confidence
that the reviewed images are genuine and unaltered at the bit level.
Traditionally, if an image requires partial redaction, then all of the data

within the image must be withheld from the inspector. Merkle Trees offer
a method through which partial redaction of imagery can be tolerated, with
the remaining data able to be confirmed as genuine. If each image is split
into a number of sections, then particular sections of an image can be
withheld without affecting the ability of an inspector to confirm authenti-
city of remaining sections.
Key to both of these methods is the ability to record the message digests

(or the root digest) as soon as possible after the image is captured. The ori-
ginal image can be altered during the time between the image capture and
the recording of the digest. Using the peripheral hardware unit to drive the
image capture and the digest calculation immediately after is therefore
important. In addition, the inspector must be able to include some element
of random, or inspector-controlled, data in the images to complicate and
protect against a replay attack by a malicious host.

14 R. J. HUGHES



Notes

1. Unique identifiers (UID) can be unique features that are intrinsic to an object (such
as weld patterns), or an extrinsic feature that is applied to an object (such as an
adhesive containing random distributions of reflective material).

2. See Treaty on Conventional Armed Forces in Europe: Protocol on Inspection, 1990,
100–101, https://www.osce.org/files/f/documents/4/9/14087.pdf, and the Intermediate-
Range Nuclear Forces Treaty: Inspection Protocol, 1987, https://www.acq.osd.mil/asda/
iipm/sdc/tc/inf/INF-InspProtocol.htm.

3. National Institute of Standards and Technology, Federal Information Processing
Standards Publication, Secure Hash Standard (SHS), FIPS PUB 180-4 (Gaithersburg,
MD: U.S. Dept. of Commerce, 2015), https://csrc.nist.gov/publications/detail/fips/180/
4/final.

4. Harran, Martin, William Farrelly, and Kevin Curran, “A Method for Verifying
Integrity & Authenticating Digital Media,” Applied Computing and Informatics,
14(2017): 145–158.

5. "15.1. hashlib - Secure hashes and message digests," The Python Standard Library,
Cryptographic Services, https://docs.python.org/3.5/library/hashlib.html.

6. SHA-256 is currently used in internet security protocols such as SSL/TLS and in the
creation of secret-key message authentication codes. See Ahmad, Imtiaz, and A Shoba
Das, “Hardware Implementation Analysis of SHA-256 and SHA-512 Algorithms on
FPGAs,” Computers and Electrical Engineering, 31(2005): 345–360.

7. Specifically, a Raspberry Pi Zero W, measuring approximately 37� 80� 12mm, small
enough to attach directly to the Canon EOS 1000D camera. See https://www.
raspberrypi.org/products/raspberry-pi-zero-w/ for technical details regarding the
Rapsberry Pi.

8. "gPhoto2, Digital Camera software," www.gphoto.org, libgphoto2, version 2.5.25.
Distributed under the terms of the GNU General Public License.

9. Authentication is the process by which one obtains confidence that the “equipment
has not been altered, removed or replaced, and functions such that it provides
accurate and reproducible results at all times,” taken from the International
Partnership for Nuclear Disarmament Verification, “A Framework Document with
Terms and Definitions, Principles, and Good Practices,” Working Group 1:
Monitoring and Verification Objectives, November 2017, http://ipndv.org/wp-content/
uploads/2017/11/WG1-Deliverable-One-Final-.pdf.

10. Kaspersky Resource Center, “What is a Replay Attack?” https://www.kaspersky.com/
resource-center/definitions/replay-attack.

11. JEITA, Japan Electronics and Information Technology Industries Association
Standard, “Exchangeable image file format for digital still cameras: Exif Unified
Version 2.32,” JEITA CP-3451E, 2002, Revised May 2019, https://www.jeita.or.jp/
japanese/standard/book/CP-3451E_E.

12. Merkle, Ralph, “A Digital Signature Based on Conventional Encryption Function,”
Lecture Notes in Computer Science, 293 (1988): 369–378; Yi-Cheng Chen, Yueh-Peng
Chou, and Yung-Chen Chou, “An Image Authentication Scheme Using Merkle Tree
Mechanisms,” Future Internet, 11 (2019): 149.

13. Pillow, a fork of the Python Imaging Library, developed by Alex Clark and
Contributors, https://pillow.readthedocs.io/en/stable/.

14. Quad Nuclear Verification Partnership: A collaboration between Norway, Sweden, the
United Kingdom, and the United States, https://quad-nvp.info/; U.K. Ministry of
Defence, “UK hosts international nuclear disarmament verification exercise,”

SCIENCE & GLOBAL SECURITY 15

https://www.osce.org/files/f/documents/4/9/14087.pdf
https://www.acq.osd.mil/asda/iipm/sdc/tc/inf/INF-InspProtocol.htm
https://www.acq.osd.mil/asda/iipm/sdc/tc/inf/INF-InspProtocol.htm
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://docs.python.org/3.5/library/hashlib.html
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
http://www.gphoto.org
http://ipndv.org/wp-content/uploads/2017/11/WG1-Deliverable-One-Final-.pdf
http://ipndv.org/wp-content/uploads/2017/11/WG1-Deliverable-One-Final-.pdf
https://www.kaspersky.com/resource-center/definitions/replay-attack
https://www.kaspersky.com/resource-center/definitions/replay-attack
https://www.jeita.or.jp/japanese/standard/book/CP-3451E_E
https://www.jeita.or.jp/japanese/standard/book/CP-3451E_E
https://pillow.readthedocs.io/en/stable/
https://quad-nvp.info/


Published October 2017, https://www.gov.uk/government/news/uk-hosts-international-
nuclear-disarmament-verification-exercise.

Acknowledgements

The author would like to acknowledge Dan Shepherd for discussions on cryptographic
methods and reviewing an early draft.

Disclaimer

The views expressed in this document are those of the author and do not necessarily repre-
sent those of AWE, the Ministry of Defence, or the Government of the United Kingdom.

16 R. J. HUGHES

https://www.gov.uk/government/news/uk-hosts-international-nuclear-disarmament-verification-exercise
https://www.gov.uk/government/news/uk-hosts-international-nuclear-disarmament-verification-exercise

	Abstract
	The problem
	Cryptographic hashes
	Single image verification
	Concept
	Hardware and software implementation and prototype
	Protecting against replay attacks
	Totems
	EXIF data
	Sophisticated replay attacks

	Redaction

	Merkle trees
	Redaction-tolerant image verification
	Partial redaction of an image
	Partial redaction example

	Conclusion
	Acknowledgements
	Disclaimer


