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Appendix A: Coordinate System Used in “Modelling the Performance of Hypersonic 
Boost-Glide Missiles” 

Our previous paper uses simplified equations of motion (Equations (1) – (6) in that article) that 
are appropriate for the quantities we calculated.1 In the corresponding coordinate system, Ψ and 
W are the down-range and cross-range angles, with distances measured along great circles so that 
Ψre is the range and Wre is the cross-range distance.2 The advantage of these coordinates for our 
calculation is that the velocity angle k has a simple physical interpretation as the direction of 
motion relative to the down-range direction.  

Also, as we discuss below, using the full set of equations in spherical coordinates requires an 
additional set of equations to determine what an observer on the Earth would consider range and 
cross-range distances, due to the nature of spherical coordinates near the poles.  

The full set of equations of motion in spherical coordinates (ignoring Earth’s rotation), as given 
in reference 21 of the original paper, would replace Equations (3) – (5) in our paper with these 
equations: 

𝑑𝜂
𝑑𝑡 = 	&

𝐿
𝐷) * +

𝐶!𝐴
2𝑚0

𝜌𝑣 sin 𝜎
cos 𝛾 −	

𝑣	𝑡𝑎𝑛θ	cosγ sin 𝜂
𝑟" + ℎ

			(3′) 

𝑑θ
𝑑𝑡 =

𝑣 cos 𝛾 cos 𝜂
𝑟" + ℎ

		(4′) 

𝑑ϕ
𝑑𝑡

=
𝑣 cos 𝛾 sin 𝜂
(𝑟" + ℎ)	cosθ

			(5′)  

 

where q and f  are geographic latitude and longitude coordinates, and η is the heading angle of 
the velocity vector measured from north. The origin of the coordinate system, and the launch 
location of the vehicle, is a point on the equator with zero latitude and longitude. The vehicle is 
assumed to be launched north along the line of zero longitude. 

These equations differ from (3) and (5) by the appearance of the second term in (3’) and the 
factor of cosq in (5’). (The appearance of radius re rather than r = re+h in Equations (4) and (5) 
was a typo in the original paper; our calculations used the correct version.)  

Using Equations (3’) – (5’) requires new equations for down-range and cross-range distances. 
These distances (measured along great circles) for a vehicle at a point with latitude and longitude 
(q ,f ) are given by:  

𝑐𝑟𝑜𝑠𝑠𝑟𝑎𝑛𝑔𝑒 = 	𝜀𝑟" 						(𝐴1) 

𝑟𝑎𝑛𝑔𝑒 = 𝑟" 	𝑐𝑜𝑠#$ +
cos θ cosϕ	

cos 𝜀 0								(𝐴2) 

where 

𝑐𝑜𝑠% 𝜀 = 	 (1 + 𝑠𝑖𝑛%θ + 𝑐𝑜𝑠%θ cos(2ϕ)) /2							(𝐴3) 
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The geometrical difference between the two coordinate systems and a derivation of Equations 
(A1) – (A3) is discussed below. 

Both sets of equations give identical results for flight purely in the down-range direction. They 
also give differences of only a few percent or less in range and cross-range for the maneuvering 
calculations presented in the paper, the results of which are shown in Figures 6 and 14 of that 
paper. 

Calculating Range and Cross-range in Different Coordinate Systems 

Assume a vehicle begins flying at the origin and at some time is located at a point P. Figure A1 
shows in blue how P’s coordinates (q, f) are defined in terms of latitude and longitude. Flight 
begins in the north direction, so the longitude = 0 circle defines the range direction. 

It is important to note that given a point P, there are (at least) two ways to associate a point on 
the longitude = 0 line with point P, and to define the “cross-range” distance between P and the 
longitude = 0 line: 

(1) Draw a latitude circle through P (that circle is defined by the intersection of the sphere 
with a plane parallel to the equatorial plane). Define point A as where that latitude line 
crosses the longitude = 0 line (see Figure A1). q is the angle between the x-axis and a 
radial line from the center of the sphere to point A. In this case, the distance from P to A 
along the latitude line is f Re cosq, but that is not what you would call the “distance 
between P and A” which would instead be defined along a geodesic of the sphere, that is, 
along a great circle. 

 

 
Figure A1. This figure shows two ways of assigning coordinates to a point P. Standard spherical 
coordinates for P are shown in blue. The vehicle is launched at (0,0) and the “range” direction is 
along the circle of longitude = 0 toward the north pole. The “cross-range” distance to P is the 
distance measured along the red great circle to A’.  
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(2) The correct way to associate range and cross-range distances with P is to draw a great 
circle through P that is perpendicular to the longitude = 0 line; this is shown in red in 
Figure A1. It crosses the longitude = 0 line at the point A’. The distance from the origin 
to A’ is what an observer on the Earth would define as the “range” of a vehicle that had 
reached P, since the “cross-range” distance to P would be measured along a great circle 
passing through A’ and P. The associated angles in this case, Ψ and Ω, are shown in red. 

Figure A1 shows that Ψ is always larger than q, although near the equator the difference is small.  

Figure A2 illustrates the difference between q and Ψ in an illustrative case. This figure is looking 
down on the north pole; the vehicle is launched from the equator and is passing by the pole on 
the red trajectory. It is clear that what we would call the “range angle” (Ψ) is 90 degrees, but in 
this case the spherical-coordinate angle q never gets larger than 85 degrees. 

 
Figure A2. This figure shows a view from above the north pole of a vehicle launched from the 
origin; the trajectory is shown in red.  

Derivation of Equations for Range and Cross-range from Spherical Coordinates 

Figure A1 shows that the spherical coordinates angles q and f do not directly give the range and 
cross-range distances to a point P. This section derives equations for range and cross-range from 
those variables. 

Consider a point at (latitude, longitude) = (q,f) (see Figure A3). 
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Figure A3: Consider the point shown in red at (N80, E30). The cross-range distance to the point 
is measured from the latitude = 0 line along a great circle, show as the horizontal yellow curve. 
Note that the distance measured along a line of latitude is a fraction f/2π of the circumference 
of a circle at latitude q, which is 2π re cos q. So this distance is f re cosq. 

The cross-range distance is measured along a great circle through the point, and can be found 
using spherical geometry: 

 
Figure A4: This figure assumes a unit sphere. In general the length of the arc subtended by the 
angle a will be ar, where r is the radius of the sphere. Here A is the angle between the arcs AB 
and AC, and a is the angle in the horizontal plane containing points B and C. 
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Consider a spherical triangle, with sides made of segments of great circles, as in Figure A4. Take 
A to be at the north pole, and B and C to be the points (q, ±f). The angle a is 2f, and angles b 
and c are (90 - q). 

The spherical law of cosines:3 

cos 𝑎 = cos 𝑏 cos 𝑐 + sin 𝑏 sin 𝑐 cos 𝐴												(𝐴5) 

gives: 

cos 𝑎 = 	 𝑠𝑖𝑛%q+ 𝑐𝑜𝑠%qcos	(2f)												(𝐴6) 

The cross-range is half the length of the great circle segment connecting b and c, which can be 
found from Equation (C6) as:  

𝐶𝑟𝑜𝑠𝑠𝑟𝑎𝑛𝑔𝑒 = 	
𝑎
2 𝑟" 													(𝐴7) 

The range angle corresponding to a point with (latitude, longitude) = (q,f) can be found in a 
similar way. Consider the line of longitude = 0, which bisects the angle A and the length a in 
Figure A4; this line is shown in red in Figure A5, which is the black triangle is that of Figure A4 
with the points relabeled. The point where this line intersects the horizontal arc is labelled F. The 
range angle will be given by 90 – e, where e is the angle between the radial vectors from the 
center of the sphere to the points D and F. 

 

Figure A5. This figure shows the triangle from Figure A4 with the point relabeled. The red arc 
connecting D and F bisects the angle at A in the previous figure. 
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The angle D = A/2 = f, and the length d = a/2 re, where a was calculated above.  

From the spherical law of sines:4 

sin𝐷
sin 𝑑 = 	

sin 𝐸
sin 𝑒 										(𝐴8) 

so that 

sin 𝑒 = sin 𝐸	
sin 𝑑
sin𝐷							(𝐴9) 

From Figure A5: 

sin 𝐴
sin 𝑎 = 	

sin 𝐶
sin 𝑐 	= 	

sin 𝐸
sin 𝑐 								(𝐴10) 

where the last equality comes from the fact that angles C and E are the same in the two cases. 

Combining these gives: 

sin 𝑒 = 	Y
sin 𝑎2
sin 𝑎Z	+

sin 2f
sinf 0 cosΨ	 = 	

cos f cos q		

	cos 𝑎2
									(𝐴11) 

or 

sin 𝑒 =		 	
cos f cos q		

\1 + cos 𝑎2 ]
$/%
	
									(𝐴12) 

where cos a is given by Equation (A6). The range is then given by: 

𝑅𝑎𝑛𝑔𝑒 = \
𝜋
2 − 𝑒] 𝑟" 									(𝐴13) 

So for a point with (latitude, longitude) = (q, f), the range and cross-range distances are given by 
Equations (A7) and (A13). 

Letting e = a/2, so that it is the cross-range angle, these equations can be written in the alternate 
form given in Equations (A1) – (A3). 
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Appendix B: Implications of Increasing L/D and β 

The parameters that determine the most important aerodynamic properties of a vehicle are its lift 
and drag coefficients, CL and CD, respectively. These are typically discussed in terms of the lift-
to-drag ratio, L/D = CL/CD, and ballistic coefficient, β = m/(CDA), where A is a reference area of 
the vehicle.  

L/D is the key parameter governing the range of a BGV, for reasons discussed below. While L/D 
for a subsonic aircraft can be in the range of 15 to 20, the values for hypersonic gliders are much 
lower; as noted in the text, L/D for the BGVs the United States is developing appear to be less 
than three.  

It is useful to ask to what extent future BGVs might use designs and materials that could 
significantly increase L/D, and to what extent increasing L/D might significantly improve the 
military capabilities of these weapons. 

Studies show that in principle it may be possible to increase the L/D values of hypersonic 
vehicles to six or higher using waverider designs described in the text.5 Increasing L/D to four or 
six would increase the maximum range of an BGV for a given glide speed and therefore help to 
reduce the amount of energy needed to reach a given range. This could reduce the mass of air-
launched BGVs and could allow HCMs to carry less fuel for a given range. For many 
applications, simply using a booster large enough to achieve the desired range is likely preferable 
to the difficult task of increasing range by increasing glider L/D. 

However, while the waverider concept dates from the late 1950s it has proved difficult to turn 
into working vehicles with high L/D. As a result, L/D of future systems may increase slowly over 
current values. 

As we show, the effects of realistic increases in L/D on militarily relevant capabilities of BGVs 
are generally minor. 

Effects of Changing L/D and β 

The dynamics of the vehicle during glide (velocity profile, range, and flight time) depend 
primarily on L/D and very weakly on β for a given initial glide speed V and vehicle mass m. This 
can be seen from Equation 18 in the main text and the definition of L/D, which give:  

𝐹' =	
1
2	𝐶'𝐴	𝜌𝑉

% 	= 	𝛼(𝑉)𝑚𝑔						(𝐵1) 

𝐹( =	
1
2	𝐶(𝐴	𝜌𝑉

% 	= 	
𝛼(𝑉)𝑚𝑔	
𝐿
𝐷)

					(𝐵2) 

where α(V) = 1 – (V/Ve)2, Ve = [g(Re+h)]0.5 ~ 8 km/s for the altitudes of interest here, and Re is 
the Earth radius.  

These equations show that the forces acting on the vehicle during glide only depend on β through 
the small effect that the equilibrium glide altitude, which depends on β (Equation B3), has on 
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α(V) and g. In particular, the glide altitude h enters the force equations through g and Ve in the 
combination Re + h, where Re is the radius of the Earth. 

As a result, changing β will change the drag at a given altitude but also change the glide altitude 
so that the vehicle feels essentially the same drag force. This implies that Acton’s fitting to the 
test data of the HTV-2 constrained the value of L/D much more tightly than the value of β.6 But 
since the glide dynamics depend only weakly on β, uncertainties in the value of β have little 
effect on the BGV dynamics analysis discussed in this paper and in Paper 1; changing β will 
affect the heating, as we discuss below. 

Equation 23 in the main text shows that the range of a BGV increases with L/D. However, since 
the range depends roughly on the square of the glide speed Vg for the speeds considered here, 
that range increase could alternately be achieved by a small increase in Vg. 

Heating of HGVs during the glide phase, which is a key issue for their development, depends on 
both L/D and β, and we next consider that dependence. 

The glide altitude h can be determined from the density at the glide altitude, which from 
Equation B1 depends on the lift coefficient and can be written: 

𝜌(ℎ) = 	
2𝛼𝑔𝛽
𝐿
𝐷) 	𝑉%

						(𝐵3)	 

The change in the vehicle’s kinetic energy due to drag, which shows up as energy transfer to the 
air, depends on L/D but only very weakly on β. In particular, the rate of change of kinetic energy 
(KE) (ignoring the small change in potential energy during glide) equals the drag force times V, 
and using Equation B2 is: 

𝑑𝐾𝐸
𝑑𝑡 = 	𝐹(𝑉 = 	

𝛼𝑚𝑔𝑉
𝐿
𝐷)

					(𝐵4) 

Ignoring the minor velocity dependence of α = (1-V2/Ve2) for speeds less than about Mach 12, 
this gives: 

∆𝐾𝐸 = 	
𝛼𝑚𝑔
𝐿
𝐷)
	g𝑉𝑑𝑡	 = 	

𝛼𝑚𝑔
𝐿
𝐷)
	𝑟)									(𝐵5) 

so that the energy lost by the vehicle for a given glide range is inversely proportional to L/D. 
However, since the glide range for a BGV starting at Vg and ending at Vf  is proportional to L/D, 
the total energy loss of the vehicle in that case is independent of L/D and depends only on the 
speeds at the start and end of glide, as expected: 

∆𝐾𝐸 = 	
𝛼𝑚𝑔
𝐿
𝐷)
	𝑟)	 =	

𝑚
2 	&𝑉+

% − 𝑉,%*									(𝐵6) 

where the last equality uses Equation D20 for the glide distance rG(Vg,Vf).7 
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Only a fraction of the energy lost by the BGV, however, is transferred from the air to the vehicle 
and results in heating of the body. A commonly used measure of the energy transfer to the 
vehicle is dq/dt = ρV3 (note that the empirical heating equations used in Paper 1 depend roughly 
on ρV3) where q is the energy absorbed per area. Equation B3 gives:  

𝑑𝑞
𝑑𝑡 = 𝜌𝑉- =	

2𝛼𝑔𝑉	𝛽
𝐿
𝐷) 	

						(𝐵7)	 

Unlike Equation B4, this quantity depends on β because the fraction of energy transferred from 
the air to the vehicle depends on the atmospheric density around the body, and the density at the 
glide altitude depends on β. Unlike the dynamics of the vehicle, the heating therefore depends on 
both β and L/D. 

Since the vehicle’s surface temperature T is proportional to the fourth root of dq/dt from the 
Stefan-Boltzmann law, the body temperature changes slowly with β/(L/D).8 Numerical 
calculations using the methods described in Paper 1 show that T is roughly proportional to 
[β/(L/D)]a, where a = 1/7 to 1/5 for speeds below Mach 12, confirming that T varies only slowly 
with β/(L/D). 

For example, decreasing β/(L/D) by a factor two, which would correspond, e.g., to increasing 
L/D from the HTV-2 value 2.6 to 5.2 (at constant β), would only reduce a glider’s surface 
temperature by about 10%. 

Moreover, if the vehicle takes advantage of the longer glide range that is possible with higher 
L/D, then the total energy absorbed by the vehicle would depend on β but not L/D. Ignoring the 
minor velocity dependence of α for speeds less than about Mach 12, one finds: 

𝑞 = 	
2𝛼𝑔𝛽
𝐿
𝐷)
	g𝑉𝑑𝑡	 = 	

2𝛼𝑔𝛽
𝐿
𝐷)
	𝑟)	 = 		𝛽&𝑉+% − 𝑉,%*										(𝐵8) 

where rG is the glide distance of the BGV starting at Vg and ending at Vf, which is proportional to 
L/D (Equation D20). The fact that q is proportional to β may be surprising since it means the 
energy absorbed decreases with a larger drag coefficient, but this is essentially the reason that 
early heat shields for spacecraft and reentry vehicles were blunt, which allowed these vehicles to 
slow at altitudes where atmospheric density was low. 

For a given L/D and β, an effective way of limiting the heat load to a BGV is to limit its speed 
(which decreases the heat transfer rate) and/or to shorten its range (which reduces the duration of 
heating). This appears to be the current U.S. approach, since it is focusing on gliders with speeds 
below about Mach 12 and ranges of only up to a couple thousand kilometers, rather than long-
range vehicles like the HTV-2. Reduced heating of a BGV would also decrease its infrared 
radiant intensity and therefore its visibility to IR sensors, such as SBIRS.   

Effect of Varying L/D on Range and Flight-Time Calculations 

Given the importance of the parameter L/D in determining the dynamics of a BGV, we illustrate 
how variations in L/D affect the results for range and flight time calculated in the main text.  
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Figures B1 and B2 show how the total mass and flight time versus range of a BGV vary with 
L/D for the Mach 9 case. L/D = 2.6 is the value estimated for the U.S. HTV-2 vehicle, while L/D 
= 2.2 is an estimate for the conical Common Hyper Glide Body (C-HGB) the United States is 
developing, as discussed in the main text. 

These figures show that increasing L/D increases the maximum range that a BGV of a given total 
mass can reach, or alternately, reduces the total mass needed to reach a given range. However, 
because a lower value of L/D requires a vehicle to have a higher burnout speed to reach a given 
range, Figure B2 shows that L/D has little effect on the flight time to reach a given range. 

 

 
Figure B1: Total mass required for a BGV to reach a given range for different values of L/D, for 
the case in which the BGV dives when its glide speed slows to Mach 9. The BGV mass is 700 
kg. 
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Figure B2: Flight time of a BGV to reach a given range for different values of L/D, for the case in 
which the BGV dives when its glide speed slows to Mach 9. These curves show the results for 
weapons up to 6,200 kg total mass, as in Figure B1. The BGV mass is 700 kg. 
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Appendix C: The Role of New Space-Based Sensors 

The United States is developing space-based sensors to detect and track BGVs over much larger 
areas than ground-based radars and with better resolution than SBIRS. The proposed Hypersonic 
and Ballistic Tracking Space Sensor (HBTSS) system, for example, would include a 
constellation of many hundreds of satellites in low Earth orbit in addition to satellites at higher 
altitudes.9 Such a tracking system could be useful as part of a longer-range defense system in the 
future.  

Deploying and maintaining such a system, however, would be difficult and expensive. Moreover, 
since ground-based radars should be capable of detecting BGVs of the type considered here with 
sufficient range for interceptors to engage them, the most important step in improving current 
defenses against BGVs appears to be developing more capable interceptors, rather than 
developing new sensors. 

This view is reinforced by an animation released by the Missile Defense Agency (MDA) that 
shows Aegis SM-6 interceptors and the proposed Glide-Phase Interceptor (GPI) engaging BGVs 
that are attacking U.S. ships.10 The video indicates that HBTSS would not play a crucial role in 
the defense. 

HBTSS is intended to provide sufficiently high-quality track data to allow the launch of 
interceptors before the BGV is within the range of the defense system’s radar—so-called 
“engage-on-remote.” However, the MDA video shows that engage-on-remote is not needed.  

Instead, the video shows that forward-based radars on ships surrounding a carrier could detect 
and track a BGV earlier than a radar located near the carrier, allowing interceptor launch before 
the BGV was within the range of that second radar—a situation called “launch-on-remote.” 
While not shown, the defense may be able to execute engage-on-remote using the information 
from the forward-based radar. 

The video also shows that an interceptor could engage a BGV even when launched after the 
target was detected by the interceptor’s co-located radar—a situation called “cued-organic-
defense.” This again suggests that HBTSS could increase the area defended by interceptors but is 
not required to protect ships.  
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Appendix D: Derivation of Glide Phase Equations 

To model the glide phase, we first derive simple equations that can be used for low speeds and 
short ranges, which are useful for understanding the physics. We then derive equations that apply 
more generally. 

During the glide phase, the drag force on the vehicle is: 

𝐹( =	
1
2𝐶(𝐴𝜌𝑉

% =	
𝜌
2𝛽𝑚𝑉

%							(𝐷1)			 

where ρ is the atmospheric density, b = m/CDA is the ballistic coefficient. The equations of 
motion show the lift force equals the total weight mg of the vehicle reduced by an inertial term 
due to its flight over a spherical Earth: 

𝐹' = i1 −
𝑉%

𝑉"%
j𝑚𝑔			 ≡ 	𝛼(𝑉)𝑚𝑔								(𝐷2) 

Here Ve = [g(Re+h)]0.5 ~ 8 km/s for the altitudes of interest here, where Re is the Earth radius. 
The function α(V) includes the inertial (centrifugal) effects at high speed. Since FL = (L/D)FD, 
Equations D1 and D2 can be solved for the equilibrium glide altitude h of the vehicle at speed V, 
where h corresponds to the atmospheric density satisfying: 

𝜌(ℎ) = 	
2𝛼𝑔𝛽
𝐿
𝐷) 	𝑉%

	= 		
2ĝ𝛽
𝑉% 								(𝐷3) 

Here  

ĝ		 ≡ 	
𝛼𝑔
𝐿
𝐷)
												(𝐷4)		 

plays the role of a reduced value of the gravitational constant in the presence of lift and inertial 
effects. Using Equation D3, FD can be written: 

𝐹( =
𝛼𝑚𝑔
𝐿
𝐷)
			≡ 		𝑚ĝ							(𝐷5) 

The function a varies by less than 10% as V changes from Mach 5 to Mach 10. As a result, for 
low speeds and short ranges, one can get useful approximations by assuming ĝ and FD are 
constant and estimating the glide velocity, time, and range (r) during glide by the Newtonian 
formulas: 

𝑉(𝑡) = 	𝑉+ − 	ĝ𝑡								(𝐷6) 

𝑟(𝑡) = 	𝑉+𝑡 −
1
2 	ĝ𝑡

%								(𝐷7) 

where Vg is the speed at the beginning of glide. These equations can be used to calculate the time 
tG it takes to glide a distance rG starting at a speed Vg: 
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𝑡)(𝑟)) = 	
𝑉$
ĝ 	m1 − &1 − 2ĝ𝑟)/𝑉+

%*$/%n												(𝐷8) 

and the speed of the BGV after gliding a distance rG: 

𝑉(𝑟)) = 	𝑉+&1 − 2ĝ𝑟)/𝑉+%*
$/%												(𝐷9) 

If glide begins with speed Vg and ends with Vf , then: 

𝑟)&𝑉+, 𝑉,* 	= 	
𝑉+% − 𝑉,%	
2ĝ 		= 		

𝐿
𝐷
&𝑉+% − 𝑉,%*
2𝛼+𝑔

						(𝐷10) 

and from Equation D6: 

𝑡)&𝑉+, 𝑉,* 	= 		
𝑉+ − 𝑉,
ĝ 			= 		

𝐿
𝐷
&𝑉+	 − 𝑉,	*
𝛼+𝑔

									(𝐷11) 

Equations D10 and D11 can be improved by using the average value of α(V) over the glide 
phase, since Vf is known in this case. Numerical calculations integrating the full equations of 
motion show that these expressions are good approximations for speeds below Mach 10 to 12. 

We next derive more general expressions that include the variation of FD with V and that are 
accurate for higher speeds and longer ranges. Ignoring the very small change in potential energy 
of the BGV as its altitude changes during glide, the change in kinetic energy during glide equals 
the work done by drag: 

𝑑 i
𝑚𝑉%

2 j = 	−𝐹(𝑑𝑟	 = 	−
𝑚𝑔
𝐿
𝐷)
i1 −

𝑉%

𝑉"%
j𝑑𝑟							(𝐷12) 

  

where the second equality uses Equation D5. This can be put in the form: 

g
𝑑(𝑉%)

1 − 𝑉
%

𝑉"%
	= 	−

2𝑔
𝐿
𝐷)
g𝑑𝑟		 				(𝐷13) 

which can be integrated to give Equation 22 in the main text, and reduces to Equation D9 when 
rG is short enough that the argument of the exponent is small (recall that Ve2/g = (Re + h) ~ 6,400 
km). 

Equation 23 gives the glide range of a BGV starting at Vg and ending at Vf , which is a more 
accurate version of Equation D10.  

Equation 22 for V(r) can also give the flight time during glide over a distance rG with starting 
speed Vg, by integrating over dt = dr/V(r): 
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16 

Using a change of variable s = αg1/2 exp[grG/(L/D Ve2)] this can be integrated to give Equation 24 
in the text. Equation 25, which gives the time duration of glide starting at Vg and ending at Vf, is 
a more accurate version of Equation D11. 
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