ИСТОРИЯ ПРОИЗВОДСТВА ПЛУТОНИЯ В РОССИИ

Анатолий Дьяков

В течение почти 50 лет производство и обработка оружейных делящихся материалов были главной задачей советского ядерного комплекса. Завеса секретности над всей деятельностью по ядерному оружию была поднята в 1995 году. Но Советский Союз не заявил о количестве произведенного делящегося материала, которое он создал для военных целей, и Россия не пересмотрела вопрос о раскрытии этой информации. Неправительственные аналитики произвели оценки российских запасов плутония оружейного качества, основанные на предположениях об истории мощности производственных реакторов, но такие оценки страдают неопределенностью. Эта статья пытается провести улучшенные оценки производства и текущего владения оружейным плутонием в России на основании недавних публикаций исторических документов и мемуаров относительно конструкции и операций производственных реакторов.

Анатолий Дьяков работает в Центре по контролю над вооружениями, Московский физико-технический институт,

Московская область, Россия

Статья поступила в редакцию 7 октября 2010 года и принята к опубликованию 16 ноября 2010 года.

Почтовый адрес для корреспонденций: Центр по контролю над вооружениями, Московский физико-технический институт, Институтский пер., 9, Долгопрудный, Московская область, 141700, Россия.

Электронный адрес: das@armscontrol.ru

Россия не публиковала полного отчета о производстве делящихся материалов для военных целей во времена советского и постсоветского периодов. Но неправительственные аналитики делали оценки российских запасов плутония оружейного качества, основанные на предположениях об истории мощности производственных реакторов¹. Такие оценки страдают неопределенностью, но новые публикации или исторические документы и воспоминания о конструкциях и операциях бывших производственных реакторов позволяют получать улучшенные

На основании этой улучшенной публичной информации было оценено, что произведено 145 ± 8 тонн плутония оружейного качества. Сюда входят 15 тонн плутония, полученных после сентября 1994 года тремя реакторами, производившими плутоний, которые продолжали операции для снабжения теплом и электричеством сибирских городов Томск и Железногорск. В результате российско-американского соглашения 1997 года о реакторах, производящих плутоний, российское правительство подтвердило, что этот плутоний не будет использован в оружии, Он хранится на производственных площадках в виде окислов и подчиняется двусторонним мерам по прозрачности для обеспечения уверенности в том, что не будет использован в оружии.

Около 17 тонн российского плутония оружейного качества было использовано в испытаниях ядерного оружия или потеряно в отходах и в боеголовках трех подлодок, которые затонули.

В рамках советско-американского соглашения 2000 года о размещении избыточного оружейного плутония российское правительство обязалось использовать 25 тонн из военного запаса и 9 тонн из запаса по сентябрьскому соглашению 1994 года, чтобы изготовить топливо для российских реакторов-бридеров.

В результате остаются 88 ± 8 тонн плутония оружейного качества, пригодного для оружия, плюс 6 тонн от запаса, возникшего после сентября 1994 года. Это значительно выше запаса США, равного 38 тоннам, и значительно превышает примерно 25 тонн, которые требуются для поддержки арсенала в 4600 операционных боеголовок и боеголовок активного резерва, который, как считают, сохраняет Россия.

На уральском перерабатывающем заводе "Маяк" (РТ-1) Россия выделяет плутоний оружейного качества из отработанного топлива энергетических реакторов первого поколения, работавших на легкой воде (ВВЭР-400), демонстрационных реакторов на быстрых нейтронах и своих морских, ледокольных и исследовательских реакторов, а также реакторов для производства изотопов. На конец 2009 года было накоплено 47.7 тонн плутония реакторного качества⁴. Этот гражданский плутоний накапливается для питания плутониевых реакторов-бридеров.

КОНСТРУКЦИЯ И ОПЕРАЦИИ ПРОИЗВОДСТВЕННЫХ **PEAKTOPOB**

Едва ли не весь российский плутоний был получен в

реакторах с графитовым замедлителем. Каждый реактор построен вокруг цилиндрической сборки графитовых блоков (Puc.1)⁵.

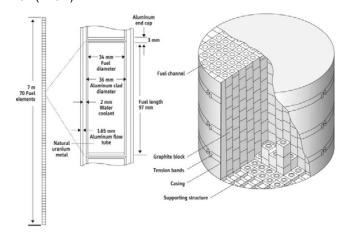


Рис. 1. Графитовая сборка производственного реактора. Источник: Бурлаков, Озерск, 1996, и Ньюмен и др., PNL-9982, 1994. Слева изображена схема топливного элемента (всего их 70) длиной 7 метров. В центре приведен продольный разрез части топливного элемента, составленного из набора урановых цилиндров диаметром 34 мм и длиной 97 мм, разделенных шайбами из алюминия толщиной 3 мм. Эти цилиндры набиваются в длинную алюминиевую трубу диаметром 36 мм, которая вставляется во внешнюю трубу из алюминия с зазором 2 мм лля охлаждающей воды. Толщина внешней трубы – 1.65 мм. Справа показана сборка в разрезе. Обозначения (сверху вниз): топливный канал, графитовый блок, стягивающая лента, отливка, поддерживающая структура.

Графитовые блоки в сборке имеют щели между собой для циркуляции азотного охладителя. В сборке также имеются вертикальные каналы для топлива и водяного охлаждения. Она опирается на поддерживающую структуру с дырами под каналами для выгрузки облученного топлива Каждый канал заключен в тонкостенную трубку из алюминиевого сплава. Большинство каналов содержало 70 топливных стержней (Рис.2), но некоторые предназначены для контрольных стержней. Охлаждающая вода протекает через трубки и вокруг топливных стержней

Советский Союз построил четырнадцать таких производственных реакторов с графитовым замедлителем и водяным охлаждением на трех площадках в России: шесть в производственном объединении "Маяк" в Озерске (бывшем Челябинске-65) около Челябинска на Урале; пять на Сибирском химическом комбинате в Северске (бывшем Томске-7) около Томска; и три - на горнорудном и химическом комбинате в Железногорске (бывшем Красноярске-26) около Красноярска. Двенадцать были сконструированы для производства плутония и два для производства трития и других изотопов. Кроме того, четыре производственных реактора с замедлителем из тяжелой воды работали на площадке "Маяка".

Рис. 2. Загрузка топливных элементов в канал работающего реактора. Заимствовано из книги *История сибирских АЭС с продолжением, 2008 год*.

Руководители советского атомного проекта постоянно настаивали на повышении производства плутония. В ответ усилия были направлены на работу реакторов с более высокой мощностью. Проектная мощность первого производственного реактора на "Маяке" (реактор "А") составляла 100 тепловых мегаватт (МВт). После набора опыта при такой мощности Игорь Курчатов – научный руководитель советской программы ядерного оружия, предложил работать с ним на мощности 170-190 МВт зимой и на 140-150 МВт в летнее время, когда охлаждающая вода была более теплой. Это позволило реактору производить до 130-140 граммов плутония в день. Затем было обнаружено, что более высокое содержание плутония-240 может оказаться терпимым для оружейного плутония. Курчатов предложил также увеличить время пребывания топлива в реакторе для увеличения концентрации плутония в облученном уране

В 1952 году было инициировано систематическое научно-техническое исследование, как еще более увеличить уровни рабочей мощности производственных реакторов следующими методами:⁸

- 1. Увеличение потока охлаждающей воды через активные зоны реактора
- Увеличение сопротивления коррозии у вкладышей в каналы и у оболочек топлива
- 3. Уменьшение скорости окисления графита, и
- 4. Увеличение внутренней рабочей температуры топливных элементов.

Пропускная способность охлаждающей воды выросла после увеличения зазора между стенками канала и топливом⁹. Проблема коррозии была решена выбором подходящих алюминиевых сплавов и добавлением бихромата натрия, что сделало охлаждающую воду более мягкой (рН порядка 6.0-6.2). Проблема окисления графита была решена, когда для охлаждения графита начали использовать азот вместо воздуха. К концу 50-х годов улучшения были введены в конструирование топлива, включая переход на легирование урана, чтобы уменьшить вызываемое радиацией раздувание урана, тепловое упрочение урановых стержней, улучшение сопротивления оболочки коррозии и контроль качества в течение производства топлива.

Эти нововведения сделали возможным поднять уровни мощности реакторов в несколько раз, как следует из дальнейшего.

производство плутония

На Рис. 3 приводятся оценки ежегодных количеств плутония, полученных на каждой из трех площадок, производивших плутоний, по отдельности и вместе.

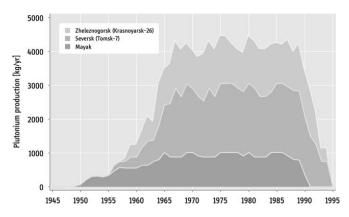


Рис. 3. Оценки ежегодного производства плутония оружейного качества по площадкам и в целом (кг в год). Производство от всех площадок показано кумулятивно, так что общее производство составляло около 4.5 тонн/год за период 1966-90 гг. По оси X отложены годы, а по оси Y — производство плутония (кг/год). В самый светлый фон окрашены данные по Железногорску (Красноярску-26), более темный фон соответствует данным по Озерску (Томск-7), а наиболее темный — "Маяку".

Производственное объединение "Маяк" (Челябинск-65)

Сроки работы пяти производственных реакторов "Маяка" с графитовыми замедлителями, а также уровни мощности (проектные и окончательные рабочие) приведены в Таблице 1. Все реакторы имели системы однократного охлаждения водой, где вода от внешнего источника прокачивалась через охлаждающие каналы и выливалась в бассейны.

Реактор А

Первый реактор для производства плутония ("А") был сконструирован под руководством Н.А.Доллежаля для работы при мощности 100 МВт¹⁰. Реактор имел 1149 вертикальных топливных и управляющих каналов в графитовом блоке с полной массой 1050 тонн. Все каналы (за исключением двадцати пяти) были загружены естественным ураном с полной массой около 120-130 тонн. Семнадцать каналов использовались для управляющих стержней, а восемь для экспериментов. Максимальное проектное тепловыделение топливного элемента в центральных каналах составляло 3.45 кВт. Начальные темпы производства у реактора составляли в среднем 0.1 кг плутония в день или 0.1 кг плутония на тонну облученного уранового топлива¹¹.

Реактор А впервые достиг критичности 10 июня 1948 года и вышел на проектную мощность в 100 МВт через 12

дней. Топливо выгрузили примерно через 100 дней облучения, а переработка началась через 30-40 дней после охлаждения в бассейне¹². Первый металлический плутоний был выделен 16 апреля 1949 года.

Табл. 1. Пять производственных реакторов с графитовым замедлителем на "Маяке".

Название реактора	Мощность (МВТ) (проектная/ увеличенная)	Дата запуска	Дата Закрытия	
Α	100/900	10.06.1948	16.06.1987	
AB-1	300/1200	05.04.1950 ^a	12.08.1989 ^b	
AB-2	300/1200	06.04.1951 ^c	14.07.1990°	
AB-3	300/1200	15.09.1952	01.11.1990 ^e	
AHR	40/100	22.12.1952	25.05.1987	

Начальный период операций выявил много технологических недостатков. Основными трудностями были коррозия алюминиевых вкладышей в каналы и покрытий топливных элементов, разбухание и повреждения урановых стержней, а также утечка охлаждающей воды в графитовую сердцевину реактора. После каждой течи реактор останавливался на период до десяти часов для осушения графита воздухом. К январю 1949 года утечки воды стали такими частыми, что было решено прекратить работу реактора и заменить все вкладыши в каналы. Это заняло около трех месяцев и реактор снова стал работать 26 марта 1949 года. В течение 1948 и1949 годов реактор А выработал 16.5 и 19 кг плутония, соответст-

Производство плутония реактором А за период 1950-1954 годов оценивается в предположении, что средняя мощность реактора составляла 180 \pm 5 МВт ¹⁴. Девяносто пять тонн из примерно 130 тонн естественного урана в сборке были разгружены после 94 эффективных дней операций на полной мощности 15. Если принять во внимание время, требуемое на перезагрузку топлива и на проведение профилактического ремонта, полная продолжительность цикла составит 103 дня. Примерно 340 тонн отработанного топлива, содержавшего около 58 кг плутония, пришлось разгружать из реактора ежегодно.

Следующий этап повышения мощности реактора А начался в 1954 году с возрастания расхода охлаждающей воды до 7000 кубометров в час и температуры воды на выходе до 95 градусов Цельсия. Теперь для охлаждения и сушки графитовой сборки стал применяться азот и температура графита выросла с 300 до 675°C. Реактор проработал со средней мощностью около 600 МВт до октября 1963 года и вырабатывал около 152 кг плутония . Однако количество остановок выросло до ежегодно ' 165 в месяц и это, в конце концов, привело к решению обновить реактор.

Реактор А возобновил работу в апреле 1964 года и проработал со средней мощностью 900 МВт с 1965 года до закрытия 16 июня 1987 года. Если предположить, что он закрывался два раза (и каждый раз на 180 дней) для проведения крупного ремонта, то всего реактор выработал 4.6 тонн плутония за этот период (Таблица А.1).

Реакторы АВ

Двадцать пятого сентября 1948 года было решено построить три АВ-реактора с возможностью получать 200-250 граммов плутония ежедневно. Эти реакторы были спроектированы в экспериментальном конструкторском бюро машиностроения (ОКБМ) под руководством главного конструктора А. Савина¹⁷. В каждом реакторе было по 1996 каналов, из которых 65 каналов использовались для контрольных стержней. Проектные мощность и ежегодная производительность составляли 300 МВт и около 100 кг плутония, соответственно¹⁸. Каждый канал был снабжен детектором утечки. Это позволило заменять вкладыши без остановки реактора.

В первый год работы на проектной мощности каждый

из АВ-реакторов вырабатывал около 260 граммов плутония в день 19. В течение нескольких первых лет работы . В течение нескольких первых лет работы реактор АВ-3 использовался для производства как плутония, так и трития. Начиная со второго года работы реакторов, их мощность постепенно повышалась и достигла 600 МВт в 1963 году^{20.} Первые ремонты были проведены через 6-7 лет работы. Большие улучшения произошли в начале 60-х годов после второго капитального ремонта, когда были решены важные проблемы с вкладышами в каналы и с топливными элементами. После этого уровни мощности 1200 МВт и ежегодное производство плутония 270 кг/год сохранялись всеми тремя реакторами до их закрытия (Таблица $\mathrm{A.1})^{21}$.

АИ-ИР реактор

АИ –реактор, введенный в действие 22 декабря 1951 года с проектной мощностью 40 МВт²², был поначалу спроектирован на получение трития²³. Его графитовая кладка имеет 248 каналов. Реактор поначалу был запитан ураном с обогащением до 2% урана-235. Уменьшение отношения уран-238/уран-235 от примерно 140 в естественном уране до 50 наряду с уменьшением производства плутония сделали большее количество нейтронов доступными для образования трития. Реактор производил также значительное количество плутония, но изза большого выгорания топлива и возникшего увеличения содержания плутония-240 этот плутоний не был использован для оружия.

За период с 1952 по 1956 годы уровень мощности реактора АИ составлял примерно 50 МВт. В 1956 году его переделали²⁴, заполнили ураном с 10%-ным обогащением, а уровень мощности вырос. В 1966 году реактор был поставлен на капитальный ремонт и возобновил работу в январе 1967 года, когда обогащение снова выросло (до 80-90%). С 1967 до 1987 года он использовался в первую очередь для испытаний облучением материалов - кандидатов во вкладыши в каналы и в покрытие топливных элементов. Он также изготовлял кобальт-60 и полоний-210, а 25 мая 1987 года его закрыли.

Реакторы на тяжелой воде

Четыре производственных реактора, где тяжелая вода используется для замедления нейтронов и для охлаждения также построены на площадке "Маяк" (Таблица 2). Все они сконструированы в ОКБМ.

Реактор ОК-180 загружался 15 тоннами уранового топлива и 37.4 тоннами тяжелой воды. Он способен произвести 0.1 кг плутония в день или 32 кг в rod^2 сначала он предназначался для производства плутония, через два года его загрузили обогащенным (2% урана-235) ураном и использовали для производства урана-233, кобальта-60, фосфора-32 и трития²⁶. Три другие тяжеловодные реакторы использовались, чтобы получать тритий для оружия, а также другие изотопы. Единственный все еще работающий реактор на тяжелой воде - это "Людмила", производящая некоторое количество трития, но 75% ее возможностей используются на производство медицинских изотопов²⁷.

Табл. 2. Реакторы на тяжелой воде на "Маяке".

Название реак-	Мощность (МВТ)	Дата	Дата				
тора	(проектная/	запуска	закрытия				
1	увеличенная)	•	·				
OK-180	100/233 ^r	17.10.1951	03.03.1966				
OK-190	300	27.12.1955	08.11.1965				
OK-190M	300	16.04.1966	16.04.1986.				
ЛФ-2 "Людмила"	ЛФ-2 "Людмила" 800 Май 1988 работает						
[†] Г. Чернецкая, "Реакторному заводу – 50 лет", Челябинск, 2000,							
No 2 ctp 27 http://www.llbozersk.ru/pbd/mava/link/43.htm							

Легководный реактор

Реактор "Руслан" - это реактор с графитовым отражателем, помещенный в бассейн с обычной (легкой) водой и обладающий проектной мощностью около 800 MBт²⁸. Он был запущен 12 июня 1979 года для производства трития. С начала 1985 года его мощность была увеличена до 1100 МВт. Хотя этот реактор сейчас использу-

^а смотрите ⁹, стр.18 ^b смотрите ⁵ (Бурдаков)

В.Н. Новоселов и В.С.Толстиков, "Секреты сороковки", Екатеринбург, " Уральский рабочий", 1995.

смотрите

то же самое.

ется в основном для получения трития, его применяют также для легирования кремния в электронных схемах фосфором 29 .

Оценки производства плутония на "Маяке" подводятся по реакторам и по годам в Таблице А.1.

СИБИРСКИЙ ХИМИЧЕСКИЙ КОМБИНАТ (Томск-7)

Пять реакторов для производства плутония были построены и работали на площадке Томск-7 (смотрите Таблицу 3)³⁰. Все они использовали графит для замедления нейтронов и обычную воду для охлаждения. Первый реактор — И-1 имел систему охлаждения с однократным прохождением воды, но остальные четыре реактора имели замкнутые первичные контуры с теплообменниками, которые вырабатывали пар для получения электричества и нагрева жилых помещений.

Табл. 3. Производственные реакторы Томска-7.

Название	Тип	Мощность (МВТ)	Дата	Дата		
реактора		(проектная/	запуска	закрытия		
		увеличенная)	-			
И-1	0	400/1200	20.11.1955	21.09.1990		
ЭИ-2	3К	400/1200	24.09.1958	31.12.1990		
АДЭ-3	3К	1450/1900	14.07.1961	14.08.1990		
АДЭ-4	3К	1450/1900	26.02.1964	20.04.2008		
АДЭ-5	ЗК	1450/1900	26.06.1966	05.06.2008		
О - однократный; ЗК - замкнутый контур						

Реакторы И-1 и ЭИ-2 были спроектированы в НИИЭТ (Научно-исследовательский институт электротехники) главным конструктором Н.Долежалем. В реакторе И-1 было 2001 каналов (65 каналов для контрольных стержней), а его конструкция и мощность были практически такими же, что и у реакторов серии АВ. Реактор ЭИ-2 был первым реактором двойного назначения, созданным в СССР. Его главной задачей было производство плутония, но выделившееся в этом процессе тепло от деления использовалось для генерирования 100 МВт электроэнергии и 200 МВт тепла для отопления жилого района. В графитовой сборке реактора было столько же каналов, что и у реактора И-1, но первичный контур с водой для охлаждения был сделан замкнутым и работал при более высоких давлениях, чем при однократном прохождении воды, как в И-1. В результате добавленной сложности операторы столкнулись с трудностями, особенно в первые годы.

Три реактора АДЭ также были спроектированы в ОКБМ для снабжения жилых районов теплом и электричеством вместе с получением плутония и работы при мощности 1450 МВт. Их графитовые кладки имели по 2832 канала каждая, из которых 132 были использованы для контрольных стержней. Для увеличения нейтронного потока во внешней части активной зоны 92 топливных канала были загружены обогащенным на 90 процентов топливом из металолокерамики³¹. В активной зоне каждого реактора содержалось 300 тонн топлива из естественного урана. При увеличенной мощности до 1900 МВт разгружалось 65 кг плутония через 42 полных дня работы при такой мощности. ³² Ежегодно более 1200 тонн облученного топлива, содержащего примерно 500 кг плутония, выгружалось из каждого реактора (Таблица A-2)³³.

ГОРНО-ХИМИЧЕСКИЙ КОМБИНАТ (Красноярск-26)

Три реактора, производившие плутоний, типов АД и АДЭ были построены на площадке в Железногорске (Красноярск-26) между 1958 и 1963 годами (Табл. 4). Они были расположены в подземных тоннелях для защиты от американского ядерного нападения. Как и реакторы типа АДЭ в Томске-7, красноярские реакторы были сконструированы в ОКБМ с проектной мощностью 1450 МВт каждый. Реактор АД охлаждался проточной водой. Реакторы АДЭ-1 и АДЭ-2 были предназначены для двух задач, но АДЭ-1 работал на проточной воде.

Реакторы Красноярска-26 произвели по оценкам 45.7 тонны плутония оружейного качества, включая 4.5 тонны плутония, изготовленного за период 1996-2010 годов, когда реактор АДЭ-2 работал на уменьшенной мощности исключительно для обогрева жилого района

(Таблица А-3).

На Рис. 4 приведены оценки кумулятивного количества плутония, произведенного на трех площадках, по отдельности и вместе.

Табл. 4. Красноярские реакторы для производства плутония.

Название реактора	Тип	Мощность (МВТ) (проектная/ увеличенная)	Дата запуска	Дата закрытия		
АД	0	1450/2000	25.08.1958	30.06.1992		
АДЭ-1	0	1450/2000	20.07.1961	20.09.1992		
АДЭ-2	0	1450/2000	январь1961	15.04.2010		
О - однократный						

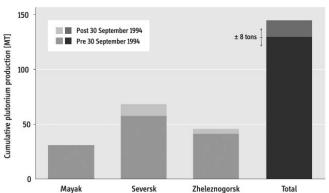


Рис. 4. Оценка производства плутония оружейного качества по площадкам и в целом (в тоннах). В обмен на содействие США в переделке и постройке новых угольных тепловых станций для обогрева жилого района Россия согласилась не использовать для оружия плутоний, полученный после 30 сентября 1994 года. На вертикальной оси отложено количество полученного плутония (в тоннах). На горизонтальной оси отложены названия четырех прямоугольников (Маяк, Северск, Железногорск и полное количество). Высота каждого прямоугольника определяет уровень производства плутония в конкретном месте. В трех случая светлые полоски разной толщины сверху от прямоугольников означают количество плутония, полученного после 30 сентября 1994 года.

Неопределенности

Неопределенности приведенных выше оценок вытекают прежде всего из неточности уровней мощности индивидуальных производственных реакторов и предполагаемой длительности их операций на этих уровнях мощности.

Наиболее важная неопределенность относится к темпам, с которыми возрастала мощность реакторов над первоначальными проектными уровнями и к уровням мощности, до которых она возрастала. Проведенные здесь оценки предполагали, что для реакторов первого и второго поколения (А, АВ и И) процесс разгона мощности занимает 6-12 лет, а для реакторов третьего поколения — 3-5 лет. Это приводит к неопределенности ± 5 тонн в производстве плутония. Если предположить, что неопределенность в уровне мощности усовершенствованных реакторов равна ± 5 процентов, то это приведет к дополнительной неопределенности в количестве плутония ± 6 тонн.

Что касается длительности периода ввода реактора в эксплуатацию, то проведенные здесь оценки предполагают длительность этого периода равной трем неделям. Но требуется больше одного месяца, чтобы вывести некоторые реакторы на их проектную мощность. Такие неопределенности приводят к дополнительной неопределенности в количестве плутония порядка ± 0.3 тонны.

В случае остановок из-за операционных проблем большее их количество относительно короткое и реакторы возвращаются в рабочее состояние через 20-30 минут. Но проходят дни и недели для восстановления нормальных операций после перегрева или плавления топливных элементов или алюминиевых вкладышей в каналы. Такие случаи происходили около 150 раз. Если предположить, что на очистку и замену в среднем уходит

от 4 до 10 дней, возникшая неопределенность приведет к ± 0.75 тоннам плутония.

Если предположить, что упомянутые выше неопределенности случайны и не взаимосвязаны, полная неопределенность общего российского производства плутония оружейного качества будет составлять около ± 8 тонн.

Потери и использование плутония

Некоторая часть полученного в топливе реакторе плутония не возвращается и остается в отходах с высоким уровнем активности. Некоторая часть использовалась при ядерных испытаниях и в критических сборках, а небольшое количество было потеряно в трех подводных лодках, которые затонули.

Потери при переработке

В начале 50-х годов около13 процентов плутония в топливе производственных реакторов терялось в отходах с высоким уровнем активности³⁴. В середине 60-х годов потери уменьшились до 3-5 процентов. На основе этой информации величина плутония, оставшегося в отходах от переработки, оценивается примерно в 5.5 тонн. Тогда 139 ± 8 тонн оружейного плутония должно быть получено из производственных реакторов.

Потери при изготовлении

Некоторое количество плутония было потеряно во время изготовления оружейных плутониевых компонент. На основе опыта США. где такие потери составляли около 5%, величина плутония, потерянного таким путем, оценивается в 7 тонн.

Использование в ядерных испытаниях

Советский Союз испытал всего 939 ядерных взрыв-устройств³⁵. Если предположить, что каждое устройных устройств . Если предположить, что каждое устройство содержало в среднем 4 кг плутония, то пришлось использовать в испытаниях 3.9 тонны плутония.

Использование в критических сборках

Около 0.54 тонны плутония оружейного качества находится сейчас в критических сборках.

Потерянные боеголовки

Три советские подводные лодки, оборудованные 25 ядерными боеголовками, которые содержали всего 0.1 тонну плутония и были утеряны

Приведенные выше оценки производства, потерь и использования просуммированы в Табл.5.

Табл. 5. Производство, использование и запасы российского плутония оружейного качества

	Категория	Плутоний
	материального баланса	(тонны)
Производство	площадка Маяк	30,9
	площадка Северск	68,3
	площадка Железногорск	45,7
	Всего	144,9
Удаление	Отходы	-5,5
	Потери при изготовлении	-7,0
	Испытания	-3,9
	Потери боеголовок	-0,1
	Исследовательские сборки	-0,5
	Всего	-17,0
Запасы (2010)		127,9
Объявлено		-34,0
избыточным		
Не подходит		-6,0
для оружия		
Годится		87,9
для оружия		

ПРИМЕЧАНИЯ И ССЫЛКИ

- 1. Томас Кохрен, Роберт Норрис и Олег Бухарин, *Создание российской бомбы: от Сталина до Ельцина* (Boulder, CO, Westview Press, 1995); Дэвид Олбрайт, Фрэнс Беркоут и Уильям Уолкер, Плутоний и высокообогащенный уран 1996: Мировые запасы, возможности и политика (Solna, Sweden: SIPRI and Oxford University Press, 1997); Анатолий Дьяков, "Демонтаж и уничтожение химического, ядерного и обычного оружия" в сборнике "*Размещение* плутония оружейного качества в России; оценки разных вариантов" (Boston: Kluwer Academic Publishers, 1987).
- 2. Недавно вышло трехтомное издание "Атомный проект СССР, Документы и материал" под редакцией Льва Рябева (Наука-Физматлит). В него входят (ранее секретные) правительственные документы, касающиеся разработки советской ядерной инфраструктуры в период 1945-1954 годов.
- 3. В России по оценкам имеется 7300 дополнительных боеголовок, ожидающих демонтажа (Bulletin of the Atomic Scientists, January/February2010).
- 4. "Сообщение, полученное от Российской Федерации, относительно ее политики по поводу управления плутонием", IEAE, INFCIRC/549/Add. 9/12 (16 August 2010).
- 5. Н.С.Бурдаков, Некоторые страницы из истории развития технологии промышленных уран-графитовых реакторов, Озерск, 1996; Д.Ньюмен и др., "Обзор ближайших вариантов для российских плутониевых промышленных реакторов", PNL, Richland, Washington, July 1994. энергетика. Сибирская АЭС. История с 6. Пучистая
- продолжением (Томск, 2008). 7. Смотрите², " Предложение Игоря Курчатова об увеличении производства плутония на реакторе А, 9 апреля 1949 года ", Документ 244, том второй, Атомная бомба, книга 4. Предложенное топливо с увеличением выгорания привело к получению 150-160 граммов плутония на тонну урана. 8. Смотрите⁵, (Бурдаков).
- 9. Б.В. Брохович, Химический комбинат "Маяк" (Озерск, 1996, стр. 167).
- А.К.Круглов, "Заметки о первом реакторе по производству плутония в СССР", в книге
- 10. "История советского ядерного проекта" (под редакцией В.П.Визгина), Москва, Янус-К, 1998.
- 11. Смотрите², "Письмо Ванникова Берии о реакторе А, 3 февраля 1949 года", Документ 228, том второй, Атомная бомба, книга 4.
- 12. Смотрите книгу¹⁰, Я.П. Докучаев, "От плутония до плутониевой бомбы: от мемуаров до участников собы-
- 13. Смотрите⁷, а также "Доклад Л.Берии И.Сталину о выполнении правительственного плана о разработке атомной промышленности, 26 марта 1951 года," Документ 293, том второй, Атомная бомба, книга 5, (Москва-Саров, Наука-Физматлит, 2005).
- 14. Смотрите⁹, стр.130.
- 15. Это соответствует 0.17 кг плутония на тонну топлива. Смотрите также 7 .
- 16. Смотрите⁹, стр. 136. 17. Смотрите², Документ 46, "Решение Совета Министров о сооружении агрегата АВ", том второй, *Атомная бомба,*
- 1945-1954, книга 4. 18. Смотрите², Документ 300, "Информационная сводка о ядерных реакциях", том второй, Атомная бомба, 1945-1954, книга пятая.

- 21. "Завод 23," Озерский вестник," No.48/49. 1993,.стр.7,
- http://www.libozersk.ru/pbd/mayak/link/17.htm. 22. П. А. Журавлев, Мой ядерный век (Москва, Хронос Пресс, 2003), стр.134; Кузнецов В. М., Производственное объединение "Маяк": История объединения, http://www.libozersk.ru/pbd/Mayak60/link/237.htm.
- 23. Смотрите², Документ 122, "Распоряжение Совета Министров СССР 13030-рс/оп о постройке агрегата для производствам трития," 18 августа 1950 года, том третий, Атомная бомба, 1945-1954, книга первая.

24. Смотрите⁸

25. Смотрите², Документ 306, "О ситуации с работой по разработке атомной промышленности," 16 ноября 1951

года, том второй, книга пятая.

26. Смотрите², Документ 187, "Письмо Б Ванникова и других Л.Берия о переводе Завода 3 (ОК-180) на производство урана-233," 6 мая 1952 года, том третий, книга первая; А.К. Круглов, "О первых в нашей стране реакторах с тяжелой водой", в книге Создание первой советской ядерной бомбы (Москва, Энергоатомиздат, 1995), стр.313.

27. В Губарев, "Руслан и Людмила – реакторы для термоядерного оружия," *Наука и жизнь*, No.6, 1997.

28. Смотрите⁹, стр. 130.

- 29. Смотрите , стр. 130. 29. Смотрите , стр. 130. 29. Смотрите статью Кузнецова²². Когда стабильный кремний-30 поглощает нейтрон, он превращается в кремний-31 и с периодом полураспада 2.6 часа превращается в устойчивый фосфор-31. 30. Реактор ЭИ-2 был поначалу введен в действие в
- 30. Реактор ЭИ-2 был поначалу введен в действие в феврале 1958 года в режиме однократного пропускания охлаждающей воды, ожидая установки парогенератора и турбины. Его перевели в режим двойного назначения 24 сентября 1958 года. Смотрите статью П.А.Журавлева стр.252-254.
- 31. Керметовое (металлокерамическое) топливо содержит 6% UO $_2$, перемешанного с алюминием. Концентрация урана-235 в керметовом топливе такая же, как в топливе из естественного урана, и поэтому генерируется такое же количество тепла, но практическое отсутствие урана-238 в топливе снижает поглощение в нем нейтро-

нов и тем самым компенсирует более высокую утечку нейтронов через поверхность реактора из внешней части активной зоны.

- 32. Естественный уран выводится с выгоранием 468 Мвтдней/тонна и с содержанием 420 граммов плутония на тонну урана. Таким образом, при этом выгорании реакторы производят примерно 0.9 граммов плутония на МВтдень. Еще 65 МВт генерировалось топливом из металлокерамики. Поэтому всего реактор производил около 0.87 граммов плутония на МВт-день.
- 33. Были сделаны оценки в предположении, что реакторы работали на проектной мощности в течение первых нескольких лет. Кроме того, предполагалось, что, начиная с 1995 года, когда заказ на плутоний оружейного качества был отменен, реакторы АДЭ-4 и АДЭ-5 работали при 75%-ной мощности, то есть, 1435 МВт.

34. Смотрите¹⁸

35. И. А. Андрюшин, А.К.Чернышев и Ю.А. Юдин, *Укро- щение ядра,* Саров, 2003, стр.164.

36. Подводная лодка К-129 затонула в 1968 году с тремя баллистическими ракетами, на каждой из которых было по одной боеголовке, и с двумя торпедами, имевшими ядерное вооружение. Подлодка К-219 затонула в октябре 1986 года с шестнадцатью баллистическими ракетами, каждая из которых была вооружена одной ядерной боеголовкой, а также с двумя торпедами, имевшими ядерное вооружение. Подводная лодка: "Комсомолец" затонула в 1989 году с двумя торпедами, имевшими ядерное вооружение.

ПРИЛОЖЕНИЕ А. ОЦЕНЕННОЕ ПРОИЗВОДСТВО ПЛУТОНИЯ ПО РЕАКТОРАМ И ГОДАМ

Табл. А.1. Площадка Маяк (все величины в килограммах)

Годы		Реакторы					Совокупное количество (кг)
	A	AB-1	AB-2	AB-3	OK-180	количество (кг)	100120 (111)
1948	16			-		16	16
1949	19					19	35
1950	30	39				69	104
1951	58	100	50		3	211	315
1952	58	100	100	24	25	207	622
1953	58	108	108	20	25	319	941
1954	58	108	108	20		294	1235
1955	76	135	108	20		339	1574
1956	152	162	135	20		469	2043
1957	152	162	162	100		576	2619
1958	152	81	162	162		557	3176
1959	152	162	81	162		557	3733
1960	152	162	162	81		557	4290
1961	152	162	162	162		638	4928
1962	152	162	162	162		638	5566
1963	152	270	162	162		746	6312
1964	103	270	270	162		805	7117
1965	207	270	270	270		1017	8134
1966	207	135	270	270		882	9016
1967	207	270	135	270		882	9898
1968	207	270	270	135		882	10780
1969	207	270	270	270		1017	11797
1970	207	270	270	270		1017	12814
1971	103	270	270	270		913	13727
1972	207	135	270	270		882	14609
1973	207	270	135	270		882	15491
1974	207	270	270	135		882	16373
1975	207	270	270	270		1017	17390
1976	207	270	270	270		1017	18407
1977	207	270	270	270		1017	19424
1978	207	270	270	270		1017	20441
1979	103	270	270	270		913	21354
1980	207	270	270	270		1017	22371
1981	207	135	270	270		882	23253
1982	207	270	135	270		882	24135
1983	207	270	270	135		882	25017
1984	207	270	270	270		1017	26034
1985	207	270	270	270		1017	27051
1986	207	270	270	270		1017	28068
1987	100	270	270	270		910	28978
1988		270	270	270		810	29788
1989		250	270	270		790	30578
1990			130	220		350	30928
Всего:	6138	8508	8407	7822	53	30928	

Табл. А.2. Сибирский химический комбинат (все величины в килограммах)

Годы	Реакторы					Ежегодное	Совокупное
	И-1	ИЭ-2	АДЭ-3	АДЭ-4	АДЭ-5	количество (кг)	количество (кг)
1955	10	VIO-2	7ДО-3	лдо-4	7д0-3	10	10
1956	170					170	180
1957	170					170	350
1958	170	29				199	549
1959	170	155				325	874
1960	170	155				325	1199
1961	170	155	202			527	1726
1962	170	155	392			717	2443
1963	85	155	392			632	3075
1964	270	78	392	268		1008	4083
1965	270	155	392	392	202	1411	5494
1966	270	260	250	500	292	1572	7066
1967	270	260	500	500	500	2030	9096
1968	270	260	500	250	500	1780	10786
1969	270	260	500	500	500	2030	12906
1970	135	260	500	500	500	1895	14801
1971	270	260	500	500	250	1780	16581
1972	270	130	500	250	500	1650	18231
1973	270	270	500	500	500	2040	20271
1974	270	270	250	500	500	1790	22061
1975	270	270	500	500	500	2040	24101
1976	270	270	500	500	500	2040	16141
1977	270	270	500	500	500	2040	18181
1978	135	270	500	500	500	1905	30086
1979	270	135	500	500	500	1905	31991
1980	270	270	500	500	500	2040	34031
1981	270	270	500	500	500	2040	36071
1982	270	270	250	500	500	1790	37861
1983	270	270	500	250	500	1790	39651
1984	270	270	500	500	250	1790	41441
1985	270	270	500	500	500	2040	43481
1986	270	270	500	500	500	2040	45521
1987	270	270	500	500	500	2040	47561
1988	270	270	500	500	500	2040	49601
1989	270	270	500	500	500	2040	51641
1990	202	270	250	500	500	1722	53363
1991			500	500	500	1500	54683
1992			250	500	500	1250	56113
1993				250	500	750	56863
1994				500	250	750	57613
1995-2008				5300	5400	10700	68313
Всего:	8237	7452	14020	19460	19144	68313	

Табл. А.3. Горно-химический комбинат (все величины в килограммах)

Годы		Ежегодное	Совокупное		
	АД	АДЭ-1	АДЭ-2	количество (кг)	количество (кг)
1958	101	АДО-1	АДО-2	101	101
1959	378			378	479
1960	378			378	857
1961	378	130		508	1365
1962	378	378		756	2121
1963	189	378		567	2688
1964	505	378	368	1251	3939
1965	505	189	378	1072	5011
1966	505	505	378	1188	6199
1967	505	505	405	1415	7614
1968	505	505	405	1415	9029
1969	505	505	202	1212	10241
1970	252	505	405	1162	11403
1971	505	252	405	1162	12565
1972	505	505	405	1415	13980
1973	505	505	405	1415	15395
1974	505	505	405	1415	16810
1975	505	505	405	1415	18225
1976	505	505	405	1415	19640
1977	505	505	202	1212	20852
1978	252	505	405	1162	22014
1979	505	252	405	1162	23176
1980	505	505	405	1415	24591
1981	505	505	405	1415	26006
1982	505	505	405	1415	27421
1983	505	505	405	1415	28836
1984	505	505	405	1415	30251
1985	505	505	202	1212	31463
1986	505	252	405	1162	32625
1987	505	505	405	1415	34040
1988	252	505	405	1162	35202
1989	505	505	405	1415	36617
1990	505	505	405	1415	38032
1990			405		
	505 250	505 360	405 405	1415	39447
1992 1993	250	360	405 405	1015 405	40462
					40867
1994			405	405	41272
1995-2010	45.100	44104	4462	4462	45734
Всего:	15433	14184	16317	15734	